
Spatiotemporal Symmetries

in the Disynaptic Canal-Neck Projection

Martin Golubitsky

Department of Mathematics

University of Houston

Houston TX 77204-3008, USA

LieJune Shiau

Department of Mathematics

University of Houston-Clear Lake

Houston TX 77058, USA

Ian Stewart

Mathematics Institute

University of Warwick

Coventry CV4 7AL, UK

March 2, 2007

Abstract

The vestibular system in almost all vertebrates, and in particular in humans, con-

trols balance by employing a set of six semicircular canals, three in each inner ear,

to detect angular accelerations of the head in three mutually orthogonal coordinate

planes. Signals from the canals are transmitted to eight (groups of) neck motoneurons,

which activate the eight corresponding muscle groups. These signals may be either

excitatory or inhibitory, depending on the direction of acceleration. McCollum and

Boyle have observed that in the cat the network of neurons concerned possesses octa-

hedral symmetry, a structure that they deduce from the known innervation patterns

(connections) from canals to muscles.

We re-derive the octahedral symmetry from mathematical features of the probable

network architecture, and model the movement of the head in response to the activation

patterns of the muscles concerned. We assume that connections between neck muscles

can be modeled by a ‘coupled cell network’, a system of coupled ODEs whose variables

correspond to the eight muscles, and that this network also has octahedral symmetry.

The network and its symmetries imply that these ODEs must be equivariant under a

suitable action of the octahedral group.

It is observed that muscle motoneurons form natural ‘push-pull pairs’ in which, for

given movements of the head, one neuron produces an excitatory signal whereas the
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other produces an inhibitory signal. By incorporating this feature into the mathematics

in a natural way, we are led to a model in which the octahedral group acts by signed

permutations on muscle motoneurons.

We show that with the appropriate group actions, there are six possible spatiotem-

poral patterns of time-periodic states that can arise by Hopf bifurcation from an equi-

librium representing an immobile head. Here we use results of Ashwin and Podvigina.

Counting conjugate states, whose physiological interpretations can have significantly

different features, there are 15 patterns of periodic oscillation, not counting left-right

reflections or time-reversals as being different. We interpret these patterns as motions

of the head and note that all six types of pattern appear to correspond to natural head

motions.

1 Introduction

The human vestibular system is a system of tubes that contain sensors for the sense of

balance. There are two main components: the otolith organs, which sense linear acceleration

of the head (translation), and the semicircular canals, which sense angular acceleration of the

head (rotation). Each ear contains three semicircular canals (henceforth ‘canals’) arranged

in three approximately mutually orthogonal planes. See Figure 1. A similar arrangement

occurs in most vertebrates. We do not discuss the otolith system or other physiological

features of the sense of balance.

Figure 1: Structure and location of the semicircular canals (right ear). From Vilis [17].

In this paper we focus on two points. First, we rederive the symmetry group Γ of the

network of neurons that conveys signals from the six canals to eight principal muscle groups

that control the position of the neck. McCollum and Boyle [12] analyzed experimental work

of Shinoda et al. [14, 15, 16] and Wilson and Maeda [18] to discover these symmetries. Our

derivation makes transparent the fact that Γ is the 48 element symmetry group of the cube,

which is called the octahedral group. This network of connections is known as the canal-neck
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projection.

Second, we assume that the octahedral group Γ is also the symmetry group of the internal

dynamics of the muscles and associated neural connections and we use these symmetries to

discuss natural rhythmic head motions. We look only for small amplitude periodic head

motions that can be sustained by the neck muscles alone. In particular, we assume that

the sensory inputs from the canals are not relevant, except to prescribe the symmetries of

the system. A similar approach has been applied previously to spatiotemporal patterns in

animal locomotion, see Buono and Golubitsky [3], Collins and Stewart [4, 5], Golubitsky

et al. [10, 11]. However, in those papers the patterns of locomotion were used to infer

the symmetry of the network of neurons (central pattern generator) that produced them,

whereas here we infer the patterns of movement from the known symmetries of the canal-neck

projection.

Our approach is straightforward but not completely standard. The work of McCollum

and Boyle [12] suggests a simplest network for the motoneurons of the eight muscle groups.

Although we do not know (and perhaps cannot know) an accurate differential equations

model for the (abstracted) muscle motoneurons, we can presume the form that such a model

will take. We use the symmetries and the network structure to answer the question: What are

the spatiotemporal symmetries of small amplitude periodic solutions that can be obtained by

Hopf bifurcation from a group invariant equilibrium in this class of possible models? (These

periodic solutions are the ones that can most naturally exist in models near a position where

the head is held fixed and upright. A more general classification of the spatiotemporal

symmetries of periodic solutions, whose amplitudes are not necessarily small, can be made

using the H/K Theorem [3, 9]. However, we choose to begin our classification with the more

restricted problem of small amplitude periodic solutions near an upright head.)

Using a caricature of the physical actions of the muscle groups, we observe that a group

invariant equilibrium corresponds to one in which the head is held fixed. Using this car-

icature we can also interpret the form that the head motions will take based only on the

spatiotemporal symmetries of the associated periodic solutions. In this sense our approach

is model-independent; it does not depend on the particular system of ODEs. Our results

provide a list, or menu, of the possible head motion types; specific models and specific pa-

rameters in the models choose from this menu and determine which solution types exist and

which are stable. We do not discuss such model-dependent issues here.

In order to relate these spatiotemporal symmetries with characteristic head motions,

we need to make assumptions about how the eight muscle groups move the head. For

physiological and mathematical reasons we are led to classify the eight muscle groups into

four opposing pairs. When both muscles in a pair are equally activated the head will not

move. Indeed, to move the head, one muscle group must pull harder than the opposing one;

we classify only those periodic states that satisfy this constraint.
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To analyse the possible dynamics we employ the theory of dynamical systems with sym-

metry, which has implications for the dynamics of such a network. We restrict ourselves to

classifying those types of head motions that can be described by small-amplitude periodic

states near a group-invariant equilibrium. The mathematical tool for performing this classi-

fication is the Equivariant Hopf Bifurcation Theorem [8, 9]. In particular, we use the results

of Ashwin and Podvigina [1] on Hopf bifurcation with octahedral symmetry.

This classification is ‘model-independent’ in the sense that it does not depend upon the

detailed structure of the network of neurons concerned, or on the precise equations used to

model neurons, provided the symmetry constraints are respected. Since all model equations

in current use are primarily phenomenological, and the precise architecture of the muscle

group network is unknown (even in the cat), model-independent results have a potential

advantage: they depend only on the known symmetries of the network. Any specific choice

of network architecture and model neuron dynamics (associated for example with particular

vertebrate species) will generate a list of spatiotemporal patterns taken from the general

classification, but with extra model-dependent restrictions on existence and stability. The

model-independent features of the problem can also help to structure existence and stability

calculations in specific models, see [9].

In order to create this menu and to make predictions about head motions, we must

determine the appropriate ‘phase space’ variables upon which the group Γ acts, and also

specify the appropriate group action. Our approach, as in the gaits work, is to use the

network structure. We assume that each of the eight motoneurons (or more precisely, sets

of motoneurons) are identified with variables in Rℓ so that the phase space of the muscle

motoneurons is Y = (Rℓ)8. We also assume that the octahedral group acts on Y by permut-

ing the coordinates, just as that group permutes the vertices of the cube. Next we assume

that the differential equations that describe the time evolution of this coupled system of

neck motoneurons have octahedral symmetry. Using this symmetry we can then classify the

types of spatiotemporal symmetries that periodic states of such systems may have.

Specifically we find that there are six types of spatiotemporal symmetries for small am-

plitude periodic solutions that can bifurcate from a Γ-invariant equilibrium. Each of these

symmetry types includes a reasonable pattern of periodic head motion. They are: shaking

the head (saying ‘no’ in many cultures), which occurs in two different ways; nodding the

head (saying ‘yes’ in those same cultures), a rotating wave in which the head rolls in an

approximate horizontal circle, a combination of ‘yes’ and ‘no’ in which the head nods alter-

nately to left and right, and a side to side motion with the head rotating to move the nose

in the opposite direction (so that the nose always points at a fixed point in the distance).
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Organization of the paper

In Section 2 we give a brief description of salient features of the physiology of the vestibular

system, and rederive the octahedral symmetry of the canal-neck projection. We relate the

associated network architecture to a graph drawn on a cube, and describe a simple caricature

of the effects of the eight muscle groups. Section 3 describes the octahedral group in more

detail and motivates the choice of action of this group on muscle space. This section also

provides an explicit description of the permutation action of the octahedral group on muscle

space, lists the relevant subgroups, and classifies the isotropy subgroups — basic data for

the application of symmetric dynamics.

The Equivariant Hopf Theorem is described in Section 4, and a discussion of the irre-

ducible representations of the octahedral group, the basic information needed for application

of the Hopf theorem, is given. Proofs, which use character theory, are postponed to the Ap-

pendix. Section 5 presents a classification of the possible small-amplitude spatiotemporal

symmetry patterns for time-periodic motions of the head, determined by the canal-neck

projection. We find six distinct (conjugacy classes of) patterns, or 15 distinct patterns

(not distinguishing time-reversals or left-right reflections in physical space). These patterns

are interpreted as motions of the head in Section 6, assuming that the muscle groups act

according to our caricature. We pay attention to distinctions arising from conjugate states.

We end with a short conclusions section.

2 Symmetries in the disynaptic canal-neck projection

In this section we rederive the symmetries in the disynaptic canal-neck projection discussed

by McCollum and Boyle [12], stating the results in terms of a group of permutations acting

on the associated network of neurons. In this aspect of the vestibular system there are six

canals (three in each ear) that are connected to eight muscle groups in the neck.

The three canals located in each ear are called horizontal h, anterior a, and posterior p.

We denote the six canals by lh, la, lp, rh, ra, rp, where l stands for left and r for right. Neurons

associated to canal hairs have a base firing rate. These hairs are arranged so that fluid flow

in one direction in the canal increases the firing rate and fluid flow in the opposite direction

decreases that firing rate. Moreover, the canals are paired ({lh,rh}, {la,rp}, {lp,ra}), so that

when one member of a pair transmits an elevated or excitated signal, then the other member

of that pair transmits a reduced or inhibited one. These pairs are called polarity pairs.

The spatial arrangement of the canals is shown in Figure 2. There are three (approx-

imately) mutually orthogonal planes. One of these planes is horizontal; the other two are

vertical, at an angle of 45◦ to the plane of left-right symmetry of the head. Each polarity pair

consists of two canals that are parallel to one of these planes: one canal in the left ear, one
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rhlh

rp

rala

lp

Figure 2: Location of the three planes relative to the head, and direction of rotational motion

to which canals respond. Canals are drawn schematically near the ears.

in the right. These two canals are oriented in opposite directions in that plane and detect

rotations (actually angular accelerations) of the head about an axis perpendicular to that

plane. One member of the polarity pair detects acceleration in one orientation (clockwise or

counterclockwise) and the other member detects the opposite orientation, as illustrated by

the arrows in Figure 2. The four arrows at the corners represent rotations in the direction

‘along the arrow and down’. For example, ra responds to motion in which the nose and right

ear move forward to the left and down, while lp responds to motion in which the nose and

right ear move backward to the right and up.

Connections from canals to muscles

Experiments show that each of the six canals can transmit signals to each of the eight muscle

groups. The muscles also form four polarity pairs; if a canal is activated by the motion of

the head, then it sends an excitatory signal to one member of each pair and an inhibitory

signal to the other member. Physiological investigations (Wilson and Maeda [18], Shinoda

et al. [14, 15, 16]) suggest that each muscle group is excited by a set of three mutually

orthogonal canals (that is, one from each polarity pair) and inhibited by the complementary

set of canals (the other members of the polarity pairs).

We describe the details of this arrangement, following McCollum and Boyle, who depict

the list of signals transmitted to a given muscle group by an ‘asterisk’, Figure 3. Each

asterisk has three solid lines (inhibitory connections) and three dotted lines (excitatory

connections) and diametrically opposite lines have opposite polarity. There are eight possible

arrangements of this type. Because the asterisks are drawn in two-dimensional projection, in

a conventional orientation with lh between la and lp, there appear to be two kinds of asterisks:

two alternating (with excitation and inhibition alternating) and six non-alternating (with
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three contiguous excitatory canals). We will shortly see that under a suitable action of the

octahedral group, all eight asterisks are equivalent.

lh rh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

rhlh

la ra

lp rp

rhlh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

lh rh

la ra

lp rp

LA LD RD RA

LF RF

RELE

Figure 3: Innervation patterns corresponding to eight muscle groups. Dashed lines represent

excitatory connections and solid lines inhibitory ones.

The eight neck muscles consist of two flexors in the front (LF, RF), two extensors in the

back (LE, RE), and four side (shoulder) muscles. The side muscles are alternating (LA, RA)

or directed (LD, RD). McCollum and Boyle [12] discuss the innervation patterns between

canal neurons and muscle motoneurons—how the six canal neurons connect to the eight

muscle motoneurons, and whether the connection occurs via an excitatory synapse or an

inhibitory one. The pattern of connections to each muscle is specified by Figure 3. Each

asterisk in Figure 3 is a list of the connections from all six canals to one muscle group, and

the type of signal that is transmitted along each connection. Observe that the muscle groups

also partition into four polarity pairs:

{LA, RA} {LF, RE} {LE, RF} {LD, RD}.

If one muscle in a polarity pair has an excitatory connection from a canal, then the other

muscle in that polarity pair has an inhibitory connection from that canal.

It is useful to display the same information in two other ways. McCollum and Boyle [12]

consider only the disynaptic pathway from the six vestibular nerve afferents (‘canal nerves’)

to the eight neck motoneurons (by way of the corresponding vestibulospinal neurons). They

remark that almost always ‘the motoneurons of each tested muscle responded to stimulation

of all six canal nerves’. The responses were classified as either inhibitory or excitatory, as

indicated by solid or dotted lines for the relevant arm of the asterisk. This description makes

it clear that their Figure 4 (and our Figure 3) is a diagram determining these connections.
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We make the connection pattern explicit. Figure 4 (left) shows connections to a given neck

motoneuron, here LA. The associated asterisk is drawn and the six connections correspond

to the six arms. Figure 4 (right) shows connections from a given vestibular nerve afferent,

here lh. These connections correspond to the eight lh arms in the different asterisks, and

connect to the corresponding neck motoneurons.

LE RE

LA LD

LF RF

RD RA

lh

lp

la ra

rh

rp

LE RE

LA LD

LF RF

RD RA

lh

lp

la ra

rh

rp

Figure 4: Schematic of connections from vestibular nerve afferent to neck motoneuron. Solid

line shows inhibitory synapse, dotted line shows excitatory synapse. (Left) Connections to a

given neck motoneuron, here LA. (Right) Connections from a given vestibular nerve afferent,

here lh.

We do not attempt to draw the complete network since it would contain 48 lines, 24 solid

and 24 dotted, and it would be too complicated to convey useful information. However, it is

convenient to employ a geometric image in which the canals are identified with the six faces

of a cube, and the muscles with the eight vertices. We will describe the network connectivity

using the cube.

Octahedral symmetry of canals and muscles

The cube arises naturally from the results of McCollum and Boyle [12], identifying the sym-

metry group of the canal-neck projection as the 48-element octahedral group. To understand

their observation, we identify the canals with faces of a cube, so that polarity pairs of canals
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are identified with pairs of opposite faces. Up to symmetry there is only one way to make

this identification.

To identify the muscles, we observe that every vertex of the cube is in the intersection

of exactly three faces. We identify a given vertex with that muscle that has inhibitory

connections from canals corresponding to the three faces adjacent to that vertex. For example

there is a unique vertex that is in the intersection of the three faces corresponding to the

left canals lh, lp, la (see Figure 5). We identify this vertex with the left direct muscle LD in

Figure 3, since that muscle responds to inhibitory signals from the three left canals.

lh

lp

la

LA

RA

RF

LF

LDLE

RE

Figure 5: Identification of polarity pairs and muscle groups to the cube.

In Figure 6 we show the 24 inhibitory connections on the cube diagram. The comple-

mentary set of connections from canal neurons to muscle motoneurons consist of excitatory

connections, but is omitted for clarity. The octahedral symmetry of the network is apparent

in this figure. The elements of the octahedral group act on the full network by permuting

canals, permuting muscles, and permuting the corresponding connections.

Muscle group action: a caricature

What effect do the eight muscle groups have on the head? For purposes of interpretation,

we adopt a caricature of the anatomy of the muscle groups, illustrated in Figure 7. Here

we assume that the principal effect of a muscle group being activated is to pull the head

in the indicated direction. Six muscle groups LF, LD, LE, RF, RD, RE effectively form a

‘hexagon’ and their effect is to tilt the head in various directions. The other two, LA and

RA, rotate the head about the vertical axis (as sensed by the horizontal canals lh, rh). There

is some redundancy here: the hexagon includes three pairs of muscle groups but the three

associated directions are linearly dependent. However, the use of six muscles makes the head

position more stable, so there may be physiological reasons for this redundancy. McCollum

and Boyle [12] call this hexagon the ‘central dial’. This caricature exhibits the four pairs of

opposing muscles (LD, RD), (LE, RF), (LF, RE), (LA, RA), which are just the four polarity

pairs.
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LA LF

LE LD

RE RA

RFRD
rp la

rh

lh

lp

ra

Figure 6: Schematic of inhibitory connections from canals to muscles drawn on the cube.

Solid lines show connections on ‘visible’ faces, dot/dashed lines show connections on ‘hidden’

faces. Canals are at centers of faces, muscles at vertices. Connections run to each vertex from

the three adjacent faces. The octahedral symmetry of the network is obvious geometrically.

We stress that this picture of the anatomy is a caricature. At this stage we make no

attempt to formulate a more realistic model of the physiology and the mechanics of head

movement. However, further detail of this kind could be developed without changing the

classification of possible symmetry types of time-periodic motion. What would change would

be the fine detail of the corresponding head motions, and the precise manner in which each

muscle group contributes to that motion.

LDLA RARD

LF

RELE

RF

Figure 7: Caricature of effect of activation of muscle groups.
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3 The octahedral group and its actions

We now discuss mathematical features of the octahedral group, and various actions of that

group that occur in this analysis. In particular, we introduce variables that model the state

of the eight muscle groups, and discuss how the octahedral groups acts on those variables.

The geometry of Figure 6, together with the corresponding figure for excitatory con-

nections (which has the same symmetry), shows that the network of neurons forming the

canal-neck projection has octahedral symmetry, where now the octahedral group acts by

permuting the 8 muscle groups, the 6 canal neurons, and the connections between them.

These permutation actions are distinct from, but induced naturally by, the ‘standard’ action

as isometries of R3 that preserve the cube.

Suppose we fix the cube so that it is centered at the origin. Then the symmetries of the

cube have the form R or −R where R is a rotation. It follows that the octahedral group is

the direct sum of the group O of rotation symmetries of the cube and the two-element group

Zc
2 generated by the inversion −I. That is, the octahedral group is O ⊕ Zc

2. The ‘c’ in the

notation Zc
2 indicates that this group is the center of the octahedral group.

We are modeling the canal-neck projection by a network of interconnecting neurons,

following Figures 4 and 6. This network has symmetry group O ⊕ Zc
2, which acts on the

network by permuting the set of cells and the set of arrows. This permutation action preserves

the type of the cell (canal neuron, shown as a circle, or muscle motoneuron, shown as a

square), and it preserves the type of arrow (inhibitory or excitatory).

Phase space for muscles

This permutation action can be transferred to the dynamical variables representing the states

of the cells; that is, the phase space of the network. We now describe the effect of this action

on the 8 muscle cells. In order to do this we order the eight vertices as in (3.1). The ordering

is shown on the cube in Figure 8.

RA=2

LE=5

LA=1

RE=4

RF=6
lh

rp

ra

la

lp
LD=7

rh

RD=8

LF=3

Figure 8: Ordering of vertices.

The simplest model for a state of the eight muscle motoneurons is a point in R8, with
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coordinates

(yLA, yRA, yLF, yRE, yLE, yRF, yLD, yRD) (3.1)

Each element of O ⊕ Zc
2 permutes the eight subscripts LA, RA, LF, RE, LE, RF, LD, RD

according to the associated transformation of the vertices of the cube in Figure 8. The overall

phase space for any system of ODEs representing the dynamics of the network, consistent

with the O⊕Zc
2 symmetry, is therefore equivariant for the permutation action of O⊕Zc

2 on

the space R8.

Our goal is to determine the spatiotemporal symmetries of small amplitude periodic

solutions that can be obtained from a synchronous equilibrium by Hopf bifurcation. An

important step in this analysis is the computation of the irreducible representations of the

symmetry group O ⊕ Zc
2 on (Rℓ)8. However, up to isomorphism the answer for general ℓ

is identical to the case when ℓ = 1, for the following reason. Because the group acts by

permutations (see the next subsection), the action on (Rℓ)8 consists of ℓ isomorphic copies

of the action on R8. So the isomorphism types of the irreducible components are the same

for all ℓ. However, their multiplicities depend on ℓ. We return to this point in Section 4.

The action of O ⊕ Zc
2 is determined by that of O and that of Zc

2. A crucial feature of

the ‘cube’ structure is that the action of −I preserves polarity pairs {LA,RA}, {LF, RE},
{LE, RF}, and {LD, RD}, because they label pairs of opposite vertices. Their entries are

interchanged by −I. That is, −I acts as the permutation

(1 2)(3 4)(5 6)(7 8)

Permutation action of O on muscle space

It remains to analyse the action of O. We begin the discussion of the action of O on

R8 by describing how it acts by rotations on R3 in the ‘cube’ picture. There are three

types of rotation: rotations about axes connecting centers of opposite faces, rotations about

axes connecting midpoints of opposite edges, and rotations about axes containing opposite

vertices. There are 9 rotations corresponding to faces, since there are three pairs of faces

and each pair determines three nonidentity rotations. There are 6 rotations corresponding

to edges, since there are six pairs of edges and each pair determines just one nonidentity

rotation. There are 8 rotations corresponding to vertices, since there are four pairs of vertices

and each pair determines two nonidentity rotations.

Denote by Vj the clockwise rotation of 120◦ about the axis through vertex j for j =

1, . . . , 8 (‘clockwise’ when viewed with vertex j nearest to the eye). Note that V 2
1 = V2,

V 2
3 = V4, V 2

5 = V6, V 7
1 = V8. Denote by Fj the clockwise rotation of 90◦ about the axis

perpendicular to face j for j = 1, . . . , 6. Note that F 3
1 = F2, F 3

3 = F4, F 3
5 = F6. Let

Ai = F 2
2i−1 for i = 1, 2, 3. Then the Fj and the Ai are the nine rotations about axes connecting

midpoints of opposite faces. Finally, note that each edge is uniquely the intersection of two
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I I

V1 (3 8 5)(4 7 6)

V2 (3 5 8)(4 6 7)

V3 (1 7 6)(2 8 5)

V4 (1 6 7)(2 5 8)

V5 (1 4 7)(2 3 8)

V6 (1 7 4)(2 8 3)

V7 (1 4 6)(2 3 5)

V8 (1 6 4)(2 5 3)

A1 (1 7)(2 8)(3 5)(4 6)

A2 (1 4)(2 3)(5 8)(6 7)

A3 (1 6)(2 5)(3 8)(4 7)

F1 (1 5 7 3)(2 6 8 4)

F2 (1 3 7 5)(2 4 8 6)

F3 (1 5 4 8)(2 6 3 7)

F4 (1 8 4 5)(2 7 3 6)

F5 (1 8 6 3)(2 7 5 4)

F6 (1 3 6 8)(2 4 5 7)

E13 (1 2)(3 7)(4 8)(5 6)

E14 (1 5)(2 6)(3 4)(7 8)

E15 (1 2)(3 4)(5 7)(6 8)

E16 (1 3)(2 4)(5 6)(7 8)

E35 (1 8)(2 7)(3 4)(5 6)

E45 (1 2)(3 6)(4 5)(7 8)

Table 1: Permutation actions on R8 of rotations in O.

subgroup order generators normalizer

ZA
2 2 A3 D4

ZE
2 2 E16 DE

2

Z3 3 V1 S3

DA
2 4 A1, A3 O

DE
2 4 E15, E16 D4

subgroup order generators normalizer

Z4 4 F3 D4

S3 6 E15, V1 S3

D4 8 A3, F3 D4

T 12 A3, V4 O

O 24 V4, F5 O

Table 2: The 10 nonidentity subgroups of O up to conjugacy, with generators.

faces. Denote by Eij the rotation by 180◦ about the edge in the intersection of faces i and

j, where i < j. There are six possibilities.

In Table 1 we list the 24 rotations and their permutation actions on R8. The entries can

be read off easily from Figure 8.

Subgroups of O

We use the following notation for groups: Zk is the cyclic group of order k, Dk is the dihedral

group of order k, Sk is the symmetric group of degree k, and T is the tetrahedral group.

This is the unique subgroup of O that has order 12, and it fixes a tetrahedron inscribed in

the cube. Table 2 lists the 11 conjugacy classes of subgroups of O. This calculation was

done using the algebra program GAP.
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4 Types of Hopf bifurcation

Hopf bifurcation is the tool for finding small-amplitude periodic states near an equilibrium.

Equivariant Hopf theory [8, 9] states that there is a different type of Hopf bifurcation from a

group-invariant equilibrium for each irreducible representation of the group. The Equivariant

Hopf Theorem helps classify the types of spatiotemporal symmetries of periodic states that

emanate from a given Hopf bifurcation. We apply this theory in the case of O ⊕ Zc
2 acting

on muscle space (Rℓ)8 where the equilibrium is O ⊕ Zc
2-invariant. At such an equilibrium

opposing muscles act with equal strength, so that the head is fixed and upright.

As noted previously, the types of irreducible representation of O ⊕ Zc
2 acting on (Rℓ)8

are identical with those of O ⊕ Zc
2 acting on R8. So the first step is to find the irreducible

representations of O⊕Zc
2 acting on R8. We will show that there are four different irreducible

representations, only two of which can lead to periodic states corresponding to nontrivial

head motions. One of the associated Hopf bifurcations is simple to analyze, and the other

was analyzed previously by Ashwin and Podvigina [1].

Decomposition of R8 into ‘push-pull’ and ‘pull-pull’ subspaces

The irreducible representations are intimately associated with the action of the inversion

−I, which plays a key role because it swaps the members of each pair of opposing muscle

motoneurons.

We can decompose R8 = Y + ⊕ Y − into two 4-dimensional O ⊕ Zc
2-invariant subspaces,

so that −I acts trivially on one subspace and changes sign on the other. To do so, define

Y ± = {y ∈ R8 : yLA = ±yRA, yLF = ±yRE, yLE = ±yRF, yLD = ±yRD}

Note that the coordinates corresponding to opposing muscle pairs in Y + are equal and

the coordinates corresponding to opposing muscle pairs in Y − are equal in magnitude but

opposite in sign.

As noted previously, three polarity pairs of muscles (the central dial) pull the head in

opposite directions, and the muscles of the fourth pair (the alternating muscles) twist the

head in opposite directions. In states in Y + polarity pairs of muscles act as ‘pull-pull’ pairs,

whereas in states in Y − these polarity pairs act as ‘push-pull’ pairs. In fact, all muscles

must be under tension; thus ‘push-pull’ pairs really operate with one muscle group pulling

harder than usual while the other pulls less hard. Phenomenologically, we can identify the

difference between the tensions of two muscles in a polarity pair with the deviation of the

tension (of either muscle, subject to sign) from the rest tension in which the head remains

upright.

Next we observe that Hopf bifurcation corresponding to an irreducible representation in

Y + can only lead to periodic states in which the head is immobile. The reason is simple:
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Y + = Fix(−I), which is flow-invariant. Thus, in the nonlinear theory, any periodic state

emanating from such a bifurcation must itself be fixed by −I; consequently, the opposing

muscles in each polarity pair are always pulling with the same strength, creating a net motion

of zero. As well as being inefficient, this space of motions has no visible effect on the head. In

contrast, on the space Y −, opposing pairs of muscles cooperate to move the head in exactly

the same manner, so the muscle actions reinforce each other.

In fact, neither subspace Y + and Y − is irreducible; each subspace decomposes into a

1-dimensional and a 3-dimensional irreducible representation. The previous remark implies

that we need focus only on the subspace Y − ∼= R4.

Decomposition of Y − into irreducible subspaces

As we have seen, the inversion −I interchanges the muscles in each polarity pair and the

states in Y − are ones of the form

(yLA,−yLA, yLF,−yLF, yLE,−yLE, yLD,−yLD) (4.1)

that is, we can parametrize Y − by the strengths of the four left muscle groups, which

correspond to the muscle groups numbered 1, 3, 5, 7. Thus we can rewrite (4.1) as

(y1,−y1, y3,−y3, y5,−y5, y7,−y7)

which we parametrize by (y1, y3, y5, y7).

On Y − the action of O ⊕ Zc
2 can now be written using signed permutations, since this

action preserves polarity pairs and introduces a minus sign when members of a polarity pair

are swapped. In particular, we can identify the action of −I on Y − with the signed permu-

tation (−y1,−y3,−y5,−y7); that is, −I acts by multiplication by −1 on Y −, as expected.

The signed permutation action of O on Y − is given in Table 3.

The subspace Y − contains the 1-dimensional (hence irreducible) subspace

Y −

0 = R{(1,−1,−1, 1,−1, 1, 1,−1)}

upon which the elements A3 and V4, the generators of the tetrahedral group, act trivially.

In addition, (O \ T,−I) acts trivially, since both O \T and −I act as multiplication by −1.

Let Y −

1 be the 3-dimensional invariant complement of Y −

0 in Y −; so Y − = Y −

0 ⊕ Y −

1 .

It can be shown that Y −

1 is irreducible, and the action of O on Y −

1 is isomorphic to the

standard action of the cube on R3. We do this using character theory in the Appendix.

Recall that for modeling purposes we assume that the muscle state space Y − consists of

ℓ variables for each polarity pair of muscles. Thus Y − ∼= (Rℓ)4. As noted previously the

minimal phase space for any of our models occurs when ℓ = 1. Although the analysis of

possible spatiotemporal patterns reduces to the case ℓ = 1, when we come to consider Hopf
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γ Action on γ on Y −

I ( y1, y3, y5, y7)

V1 ( y1, y5,−y7,−y3)

V2 ( y1,−y7, y3,−y5)

V3 (−y5, y3,−y7, y1)

V4 ( y7, y3,−y1,−y5)

V5 ( y7,−y1, y5,−y3)

V6 (−y3,−y7, y5, y1)

V7 (−y5,−y1, y3, y7)

V8 (−y3, y5,−y1, y7)

A1 ( y7, y5, y3, y1)

A2 (−y3,−y1,−y7,−y5)

A3 (−y5,−y7,−y1,−y3)

γ Action on γ on Y −

F1 ( y3, y7, y1, y5)

F2 ( y5, y1, y7, y3)

F3 (−y7,−y5, y1, y3)

F4 ( y5, y7,−y3,−y1)

F5 ( y3,−y5, y7,−y1)

F6 (−y7, y1,−y3, y5)

E13 (−y1, y7,−y5, y3)

E14 ( y5,−y3, y1,−y7)

E15 (−y1,−y3, y7, y5)

E16 ( y3, y1,−y5,−y7)

E35 (−y7,−y3,−y5,−y1)

E45 (−y1,−y5,−y3,−y7)

Table 3: Action of elements in O on muscle ’push-pull’ polarity pair space Y −.

bifurcation, it turns out that we must require ℓ ≥ 2. (Reason: equivariant Hopf bifurcation

requires certain representations to appear twice, namely, the absolutely irreducible ones,

and that multiplicity occurs only when ℓ ≥ 2. See [8, 9].) Since all neurons, and in partic-

ular muscle motoneurons, have high-dimensional internal dynamics, this condition poses no

difficulties.

5 Symmetry types of periodic state

At a Γ-invariant equilibrium for a Γ-equivariant system of ODEs, the Equivariant Hopf

Theorem [8, 9] states (under several genericity hypotheses) that there exists a branch of

small-amplitude periodic states corresponding to every C-axial subgroup of Γ × S1 acting

on the center subspace at that equilibrium. Moreover these periodic states have spatio-

temporal symmetries given by the C-axial subgroup. A subgroup of Γ×S1 is C-axial if it is

an isotropy subgroup and its fixed-point subspace, within the eigenspace corresponding to

the purely imaginary eigenvalues, has dimension 2.

A complete discussion of equivariant Hopf theory is beyond the scope of this paper; details

can be found in [8, 9]. To simplify the remarks we make here, we assume that all periodic

solutions have period 1. Then S1, the group of phase shift symmetries, is parameterized

from 0 to 1. We now recall two general points from Hopf theory. First, the phase shift by
1

2
acts as multiplication by −1 on the center subspace. Second, the kernel of the action of

Γ × S1 on the center subspace is contained in every C-axial subgroup.
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In the case at hand, we saw that −I acts as multiplication by −1 on Y −. Thus the

element (−I, 1

2
) in Zc

2 ×S1 acts trivially in any Hopf bifurcation with center subspace in Y −.

It follows that every periodic state emanating from such a bifurcation has the property that

interchanging polarity pairs is the same as making a half period phase shift. That is,

y2(t + 1

2
) = y1(t) y4(t + 1

2
) = y3(t)

y6(t + 1

2
) = y5(t) y8(t + 1

2
) = y7(t)

(5.1)

Dividing by the subgroup Z2(−I, 1

2
) leads to the standard action of O × S1 on the center

subspace. To see this, consider the epimorphism ϕ : (O ⊕ Zc
2) × S1 → O × S1 defined by

ϕ(γ, I, θ) = (γ, θ) and ϕ(γ,−I, θ) = (γ, θ + 1

2
)

The kernel of ϕ is Z2(−I, 1

2
) and the quotient group is O×S1 with its standard action on Y −,

since ϕ(γ, I, θ) = (γ, θ). It follows that to classify the relevant types of periodic solutions,

we need only analyze those periodic solutions that occur in Hopf bifurcations associated to

O acting on Y − and then add in the constraints (5.1), if needed.

Using the decomposition of phase space into Y + and Y − components, we can write any

periodic state in the form y(t) = y+(t) + y−(t). When, we come to interpret the motions

associated with the periodic states, factoring out the Y + component will not change these

motions in any important manner since, as discussed previously, y+(t) by itself leaves the

head immobile. Moreover, near these Hopf bifurcations the Y + components will be small

compared to the Y − components. More precisely, suppose that a Hopf bifurcation supported

in Y − leads to a periodic state of amplitude ε. Then the theory implies that generically y−(t)

will be of order ε, while y+(t) will be of order ε2. Finally, coupling (5.1) with the definitions

of Y − and Y + leads to the conclusion that y+(t) oscillates with twice the frequency of y−(t)

and that
y−

1 (t + 1

2
) = −y−

1 (t) y−

3 (t + 1

2
) = −y−

3 (t)

y−

5 (t + 1

2
) = −y−

5 (t) y−

7 (t + 1

2
) = −y−

7 (t)
(5.2)

In short, when discussing small-amplitude periodic solutions of the nonlinear ODEs on

muscle phase space, the system can effectively be reduced to an O-equivariant system of

ODEs on the reduced phase space Y − whose periodic solutions also satisfy (5.2). It is this

reduced system that we study for the remainder of this paper.

Spatiotemporal symmetries defined by H and K

In Γ-equivariant systems we can associate two subgroups H and K of Γ to each periodic state

y(t). Elements of the subgroup K fix the periodic trajectory pointwise, whereas elements

of the subgroup H fix the periodic trajectory setwise. Uniqueness of solutions with a given

initial condition implies that each element of H couples with a phase shift to fix the periodic

state.

17



When ℓ ≥ 2, periodic states can have spatiotemporal symmetry group pairs (H, K) only

if H/K is cyclic and K is an isotropy subgroup [9]. We describe the symmetries associated

to periodic states obtained by Hopf bifurcation in terms of these (H, K) pairs.

Hopf bifurcation in Y −

Next we classify the types of periodic state that can arise as a small-amplitude motion

near the steady state (in which there is no head motion). Such states can be found using

the Equivariant Hopf Theorem [8, 9]. This theorem states that there is a possible Hopf

bifurcation corresponding to each irreducible representation of O acting on phase space. Now,

the decomposition of Y − into irreducibles can be viewed as a decomposition R4 = W0 ⊕W1

where

W0 = R{(1,−1,−1, 1)} and W1 = R{(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1)}.

Here W0 corresponds to Y −

0 and W1 corresponds to Y −

1 . Both are irreducible. The kernel

of the action of O on W0 is T; the representation on W1 is the standard three-dimensional

irreducible representation, in which O acts as isometries that preserve the cube.

Hopf bifurcation via W0 leads to periodic states with H = O and K = T. Ashwin and

Podvigina [1] classify the periodic states that arise from the standard irreducible representa-

tion of O. This is the most difficult case for Hopf bifurcation. There are five types of periodic

state, whose (H, K) pairs are (D4,Z4), (DE
2 ,ZE

2 ), (Z4, 1), (S3,Z3) and (Z3, 1). Table 4 lists

these pairs, together with associated information.

We sketch the derivation of the ‘muscle oscillation’ column of this table. Consider the

pair (H, K) = (O, T) in the first row. Here T fixes the state of each muscle group at each

time. By Table 2, the group T is generated by A3 and V4. Therefore, by Table 3, any state

y(t) with the symmetry pair (O, T) must satisfy

y1(t) ≡ −y5(t) y3(t) ≡ −y7(t) y1(t) ≡ y7(t)

so that

y(t) = (u(t),−u(t),−u(t), u(t))

for a time-periodic function u. The quotient H/K is isomorphic to Z2, and is generated

(modulo K) by the element (F5, 1

2
) ∈ O × S1. This imposes the same condition u(t + 1

2
) =

−u(t) that was previously noted using the symmetry (−I, 1

2
).

For a more complicated example, consider the pair (H, K) = (Z3, 1). Since K is trivial,

no components of y(t) are forced to be synchronous. The subgroup Z3 is generated by V1,

whose action on R4 fixes y1 and cycles (y3, y5,−y7). The only possible pattern of phase shifts

here is (0, 1

3
δ, 2

3
δ), where δ = ±1. So

((y3(t), y5(t), y7(t)) = (u(t), u(t + 1

3
δ),−u(t + 2

3
δ)),
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Type H generators K generators Muscle oscillation #

(O, T) V4, F5 V4, A3 (u(t),−u(t),−u(t), u(t)) 1

(S3,Z3) V1, E15 V1 (u(t), z(t), z(t),−z(t)) 2

V3, E14 V3 (z(t), u(t),−z(t), z(t)) 3

V5, E16 V5 (z(t),−z(t), u(t), z(t))

V7, E45 V7 (−z(t), z(t), z(t), u(t)) 4

(DE
2 ,ZE

2 ) E16, E15 E16 (u(t), u(t), 0, 0) 5

E14, E13 E14 (u(t), 0, u(t), 0)

E45, E35 E45 (0, u(t),−u(t), 0) 6

E13, E14 E13 (0, u(t), 0, u(t)) 7

E15, E16 E15 (0, 0, u(t), u(t))

E35, E45 E35 (u(t), 0, 0,−u(t)) 8

(Z4, 1) F1 I (u(t), u(t + 1

4
δ), u(t + 3

4
δ), u(t + 1

2
δ)) 9

F3 I (u(t), u(t), u(t + 1

4
δ), u(t + 1

4
δ)) 10

F5 I (u(t), u(t + 1

4
δ), u(t), u(t + 1

4
δ))

(Z3, 1) V1 I (v(t), u(t), u(t + 1

3
δ),−u(t + 2

3
δ)) 11

V3 I (u(t), v(t),−u(t + 1

3
δ), u(t + 2

3
δ)) 12

V5 I (u(t),−u(t + 2

3
δ), v(t), u(t + 1

3
δ))

V7 I (u(t),−u(t + 1

3
δ),−u(t + 2

3
δ), v(t)) 13

(D4,Z4) F1, A2 F1 (u(t), u(t), u(t), u(t)) 14

F3, A3 F3 (u(t),−u(t), u(t),−u(t)) 15

F5, A1 F5 (u(t), u(t),−u(t),−u(t))

Table 4: Conjugacy classes of Hopf type states, and the associated patterns of muscle acti-

vation, where δ = ±1, u(t + 1

2
) = −u(t), z(t + 1

2
) = −z(t), v(t + 1

6
) = −v(t).

while y1(t) = v(t) is independent of these. However, the same phase shifts apply to y1, so we

must have v(t) ≡ v(t + 1

3
δ). Moreover, like every periodic state arising by Hopf bifurcation,

v also satisfies v(t + 1

2
) = −v(t). These observations lead to the condition v(t + 1

6
) = −v(t)

in the table.

Notice that for phase shifts other than 0, 1

2
the states come in pairs, with plus or minus the

stated phase shift. These pairs are identical except for time-reversal. For a given imaginary

eigenspace, either one of these states occurs or the other does, but not both. See [9, pp. 112–

114]. (When H/K ∼= Zm with m = 5 or m ≥ 7 the same pair H/K can correspond to several

distinct phase shifts, even taking the sign into account. For example, the Z5 case can have

phase shift 2

5
as well as 1

5
. However, these cases do not occur in the group O.)

Table 4 lists (up to conjugacy) five small-amplitude periodic state types that can occur by
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Hopf bifurcation supported by the standard 3-dimensional irreducible representation of O,

plus a sixth supported by the one-dimensional representation. We interpret these motions in

terms of our caricature of the muscle groups. We will see that all six cases lead to repetitive

motions that seem quite reasonable.

Conjugate states are determined by O/(N(H) ∩ N(K))

We briefly discuss the technical issue: states whose associated subgroups are conjugate.

Suppose that x(t) is a periodic state with spatiotemporal symmetry group pair (H, K).

Let γ ∈ Γ. Then γx(t) is a periodic state with spatiotemporal symmetry group pair (H ′, K ′),

where

H ′ = γHγ−1 and K ′ = γKγ−1

So the symmetry group pairs are identical if and only if γ ∈ N(H) ∩ N(K) The number of

conjugate periodic states with different spatiotemporal symmetries is

|Γ|
|N(H) ∩ N(K)| (5.3)

When we specialize to Γ = O, the number of conjugates can be found by computing the nor-

malizers of the appropriate subgroups. The normalizers are found in Table 2. In particular,

N(O)∩N(T) = O, N(S3)∩N(Z3) = S3, N(DE
2 )∩N(ZE

2 ) = DE
2 , N(Z4) = D4, N(Z3) = S3,

and N(D4) ∩ N(Z4) = D4. It follows that the number of conjugacies of the six solution

types are 1, 4, 6, 3, 4, 3, respectively, yielding 21 possibilities.

6 Head motions

The standard equivariant theory classifies solution types up to conjugacy by a symmetry

element. However, conjugate states are important here: because, with one exception, the

action of O on the muscle space network does not relate directly to motions of the head

in physical space R3, and that exception is the bilateral (left-right) symmetry of the body,

which is realized in our network by E45. So, in general, conjugate symmetry groups can

correspond to head motions that are substantially different. Counting conjugates, as we

have in Table 4, leads to 21 motions to describe—28 if we include time-reversals for ± phase

shifts. If we consider solution types up to time reversibility and bilateral symmetry, then

there are 15 types to consider. The final column (‘#’) in Table 4 is a reference number which

we will use to identify the various patterns of oscillation.
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Description of motions listed in Table 4

To explain the derivation of Table 4, we take each conjugacy class in turn, and visualize

the corresponding periodic state in the following manner. We assume, for simplicity, a two-

dimensional description in which the head is modeled by a circle, as in Figure 7. The position

of the neck is identified with the center of this circle. The orientation of the nose (under

rotation about the neck axis) is specified by a vector based at the center of the circle with

the appropriate orientation.

We decompose the head motion into two distinct components. The spatial motion of the

head is obtained by summing the six vectors representing the muscle groups of the central

dial. As time t varies through a cycle, the resultant vector describes a closed curve in

the horizontal plane, schematically representing the motion of the center of the circle that

represents the head position.

Rotations of the neck (caused by muscle groups LA, RA) are represented as rotations of

the circle about its instantaneous center. These rotations are assumed to act independently

of the translations of the circle. This assumption is invalid in the genuine three-dimensional

motion, but it provides an adequate visualization of the small-amplitude motions, bearing

in mind that Figure 7 is itself a caricature.

Next, we choose specific periodic functions u, z, v with the correct symmetry properties.

For the figures drawn here we take

u(t) = sin(2πt) + 0.2 sin(10πt)

z(t) = 0.75 sin(2πt) + 0.03 sin(10πt)

v(t) = 0.3 sin(6πt)

Then we use Table 4 to compute the six vectors of the central dial, and the rotation angle

of the nose. We denote the center of the circle (head) as a function of time t by the curve

C(t). For a periodic state y(t) = (y1(t), y3(t), y5(t), y7(t)) the closed curve C(t) has the form

C1(t) = −2y7(t) − y3(t) − y5(t)

C2(t) =
√

3(y3(t) − y5(t))
(6.1)

The term sin(10πt) is included to remove some artificial regularities from the pictures, such

as motions of the head in a perfect circle. The vector representing the orientation of the

nose is drawn at times n
12

for 0 ≤ n ≤ 11, as a vector based on the appropriate point of the

curve C, of fixed length.

This representation involves some arbitrary choices, but is adequate for our present needs.

When interpreting the figures, note that C may reduce to a line segment (described twice)

or even a single point. Also, the segments representing the nose may overlap each other, or

overlap C. These ambiguities can be resolved by creating a movie.
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(O, T): Here the muscles of the central dial follow the pattern y3(t) = yLF(t) = −u(t),

y5(t) = yLE(t) = −u(t), y7(t) = yLD(t) = u(t). From (6.1) we see that the curve C is a single

point and the center of the head does not move. The nontrivial head motion comes from yLA

and yRA, which swivel the head about its vertical axis. The overall invariance under (−I, 1

2
)

implies that this swivel motion is the same as its left-right reflection, up to a half-period

phase shift. This description corresponds exactly, under the assumptions of the model, to

the usual ‘shake the head’ motion to indicate the word ‘no’. The schematic visualization of

this motion is shown in Figure 9. Here the nose vector oscillates from left to right to form

the ‘fan’ shape illustrated.

Figure 9: Motion for pattern 1 (O, T).

(S3,Z3): If we take H = 〈V1, E15〉 and K = 〈V1〉, then this case turns out to be exactly

like the previous one, except that the time series of the direct muscled motoneurons u(t)

is unequal to the time series of the central dial muscle motoneurons z(t). Since the z(t)

motions cancel out, the motion again looks like ‘no’ and is reproduced as the first image in

Figure 10. (Here angle brackets indicate the subgroup generated by their contents.)

The patterns for the other two conjugates of this motion can be deduced in a similar

manner and are visualized in Figure 10. In pattern 3 the head is inclined alternately down

to the left and up to the right, while the nose oscillates from side to side. In pattern 4, the

head tilts alternately to left and right while the nose oscillates from side to side.

Figure 10: Motion for patterns 2-4 (S3,Z3).

(DE
2 ,ZE

2 ): First, we consider the conjugate state pattern 5 for which K = 〈E16〉 and H =

〈E16, E15〉 and y(t) = (u(t), u(t), 0, 0). The phase shift action of H/K implies that u(t+ 1

2
) =

22



−u(t). Now the muscle groups LD, RD, LE, RF are inactive; LA and LF are in phase with

each other, and RA and RE are half a period out of phase with LA and LF. The head ‘nods’

down and to the left, then up and to the right, in roughly the direction of the muscle pair

LF, RE, with a twist to the right as the head moves down, a twist to the left as it moves up.

Another conjugate state has K = 〈E14〉 and H = 〈E14, E13〉. This state is just the left/right

image of the previous one.

Second, we consider pattern 6 where K = 〈E45〉 and H = 〈E45, E35〉. Such a state has

yLA = yRA = yLD = yRD = 0. The variables yLF and yLE are half a period out of phase,

and the push-pull constraint implies that yRF is in synchrony with yLF, and similarly yRE is

in synchrony with yLE. There is thus an overall left-right symmetry, and also a front-back

symmetry when combined with a half period phase shift. This is precisely the pattern of

movement observed when nodding the head (indicating ‘yes’). Motions associated to patterns

7 and 8 are found similarly. Note that pattern 8 also corresponds to a standard head motion:

one where the head rotates left as it tilts left and then it rotates right as it tilts right.

Figure 11: Motion for oscillation patterns 5-8 (DE
2 ,ZE

2 ).

(Z4, 1): We take H = 〈F1〉. From Table 3, and noting that F1 induces a phase shift of ±1

4
,

we obtain the pattern listed in Table 4. (We also use the (−I, 1

2
) symmetry of all periodic

states.) The motions are visualized in Figure 12.

Figure 12: Motion for patterns 9-10 (Z4, 1).

In pattern 9, the head moves in an ellipse with long axis pointing towards the front.

The nose oscillates from side to side, moving outwards at the front and inwards at the back.

There are two conjugates in pattern 10 that are mirror images of each other. The motion is

much as above, but the ellipse is oriented along a different axis.
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(Z3, 1): Take H = 〈V1〉. This leads to the pattern stated in Table 4. Bearing in mind the

(−I, 1

2
) symmetry, successive phases round the central dial differ by 1

6
. The head rotates in a

‘circle’ (strictly, a closed loop with hexagonal symmetry), combined with a swivel. Choice of

plus or minus phase shifts produce clockwise or counterclockwise rotations. Conjugates here

replace V1 by V3, V5, V7, noting that V3 and V5 are mirror images. The motions are visualized

in Figure 13. In pattern 11 the head rotates in a rounded hexagonal curve, while the nose

oscillates slightly. The other two patterns are more complicated and best described using

the figure.

Figure 13: Motion for patterns 11-13 (Z3, 1).

(D4,Z4): We choose H = 〈F3, A3〉, K = 〈F3〉, and y(t) = (u(t),−u(t), u(t),−u(t)). The

conjugates are as shown in Table 4. The motions are visualized in Figure 14. In each case the

head moves in one of three planes (so C reduces to a line segment) while the nose oscillates

from side to side. In pattern 14 the head moves left and right while the nose aims at a fixed

central point.

Figure 14: Motion for patterns 14-15 (D4,Z4).

7 Conclusions

In Sections 2-4 we derived the octahedral symmetry of the canal-neck projection first dis-

covered by McCollum and Boyle [12]. After conjecturing that the symmetry of the network

of neck muscle motoneurons also has octahedral symmetry, we classified the spatiotemporal
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symmetry types of small amplitude periodic solutions that can be obtained by Hopf bifur-

caton. Finally, in Section 6, we used the caricature of muscle group actions develped in

Section 2 to suggest the form that head motions might take.

On a cautionary note, the symmetries of neuronal networks need not reflect symmetries

in the physical world. This happens in the network associated with orientation-tuned neu-

rons in the primary visual cortex [2] and is also the case in the vestibular system. Thus,

periodic solutions that are symmetrically related in the network need not be (obviously)

related in physical space (actual head movements). We believe that the issue of network

structure not being directly related to physical world structure will be important issue in

many applications.

The next steps in the program we have described are to include in the model the (symme-

try) structure of other projections in the vestibular system, for example the uvula-nodulus [7],

to include the semicircular canals, and to make more direct contact with the biology. Two

questions arise in this last step: Do the head motions we describe play some special role in

the context of general periodic head motions (that is, do these motions appear frequently in

animals), and can the classification of spatiotemporal symmetries of small amplitude motions

near an upright head give a method for classifying types of head tremor? Our classification,

which is based on the symmetries of a network that has been abstracted from the neurobi-

ology of cat, provides a prediction for likely types of periodic head motions, much like the

predictions that were implicit in our previous work on animal gaits [10, 11].

There may exist periodic states from other types of bifurcation, however, we classify the

types undergo a Hopf bifurcation in this study.)

Appendix: Characters of the octahedral group

The most efficient way to decompose the space Y − into irreducible representations of O or

O ⊕ Zc
2 is to use character theory, see for example Curtis and Reiner [6]. Recall that for a

given representation of a group Γ, the corresponding character χ is the function χ : Γ → C

for which χ(γ) is the trace of the matrix that represents the action of γ ∈ Γ. We assume

familiarity with character theory.

First, observe that any representation (space) U for O naturally determines two distinct

representations U+, U− of O ⊕ Zc
2 with the same underlying vector space. In both, the

elements of O have the same action as they do on U . The action of −I on U+ is by the

identity, whereas that on U− is by minus the identity. If U is irreducible for the action of O

then the U± are irreducible for the action of O ⊕ Zc
2.

It is easy to prove that every irreducible for O ⊕ Zc
2 arises in this manner, as follows.

Every irreducible representation of O is absolutely irreducible, so by Schur’s Lemma the

only commuting linear maps are scalar multiples of the identity. Since −I commutes with
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O and (−I)2 = I, it follows that −I must act as plus or minus the identity. The rest is

straightforward.

Therefore we can read off the irreducible representations of O ⊕ Zc
2 from those of O.

It is well known (see for example Curtis and Reiner [6] 331–333) that O has five distinct

irreducible representations: two of dimension 1, one of dimension 2, and two of dimension 3.

We can describe the irreducible representations of O as follows:

• ρ0: dimension 1; trivial action.

• ρ1: dimension 1; T acts trivially, O \ T acts by −1.

• ρ2: dimension 2; kernel is the Klein four-group DA
2 , modulo which O acts in the

standard representation of D3 on R2.

• ρ3: dimension 3; standard action of O as isometries of R3 preserving the cube.

• ρ4: dimension 3; nonstandard action on R3 in which T acts as rotations but O \ T

acts as rotations composed with minus the identity. In fact, ρ4 = ρ1 ⊗ ρ3. This

representation is also isomorphic to the standard action of S4 on the subspace of R4

consisting of points whose coordinates sum to 0.

The conjugacy classes of O are also five in number. In the notation of Table 3 they are:

{I} {Aj} {Vj} {Fj} {Ej}

The character table for O is shown in Table 5, and is derived in Curtis and Reiner [6,

pp. 332–333]. It is easy to compute the character χ of the O-action described in Table 3,

which is shown in Table 5 in the same format. In particular, we see that χ = ρ1 + ρ3. Since

characters determine representations uniquely, and direct sums of representations correspond

to sums of characters, we see that Y − decomposes into two irreducible components, the non-

trivial one-dimensional representation and the standard three-dimensional representation.

This is what we claimed in Section 4.
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{I} {Aj} {Vj} {Fj} {Ej}
ρ0 1 1 1 1 1

ρ1 1 1 1 -1 -1

ρ2 2 2 -1 0 0

ρ3 3 -1 0 1 -1

ρ4 3 -1 0 -1 1

χ 4 0 1 0 -2

Table 5: Character table for representations of O.
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