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Abstract. In a previous article (ref. [1]), the authors discussed the time-
discretization of those relations modeling some elasto-dynamical systems with friction.
The main goal of this article is to address similar problems using more sophisticated
friction models and novel computational techniques. The new models give a better
description of the system behavior when the velocities are close to zero. These
investigations are motivated by the need for more accurate friction models in the
software simulating the motion of mechanical systems, such as the remote manipulators
of the Space Shuttle or of the International Space Station. The content can be
summarized as follows: We discuss first several models of the constrained motion
under consideration, including a rigorous formulation involving a kind of dynamical
multiplier. Next, in order to treat friction, we introduce an implicit-explicit numerical
scheme which is unconditionally stable, and easy to implement. Finally, the above
scheme is coupled, via operator-splitting, to schemes classically used to solve differential
equations from frictionless elasto-dynamics. The above schemes are validated through
a series of numerical experiments.
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1. Introduction: Synopsis

Motivated by the real time simulation of elasto-dynamical systems with dry friction we

introduced in ref. [1], a family of numerical schemes taking advantage of the existence

of a friction multiplier; multiplied by an appropriate matrix this multiplier provides the

friction forces. Discrepancies between simulations and real life results lead engineers to

refine their friction models in order to improve simulation quality, particularly at very

low relative velocities, i.e. when friction forces dominate the dynamics of the system

under consideration. The modeling of friction constrained motions will be discussed

in Section 2, where the splitting of the resulting models will be also investigated. In

Section 3, we will describe an implicit-explicit time-discretization scheme well-suited

to the treatment of pure friction models. In Section 4, we shall take advantage of the

splitting techniques discussed in Section 2 to couple the scheme of Section 3 with schemes

classically used for the discretization of smooth elasto-dynamical models. The numerical

results presented in Section 5 show good convergence properties for the displacement,

velocity vectors, and the friction multiplier. In order to speed-up the computation of the

friction multipliers, a penalty/Newton method is introduced in Section 6; The related

numerical results show that this approach speeds up considerably the numerical solution

of those pure friction problems resulting from time-splitting without affecting the overall

accuracy.

The modeling and simulation of dry friction phenomena has motivated a quite large

literature; the models considered in this article are relatively simple ones belonging to

the ”folklore” of mechanical engineering; however they apply to a number of practical

situations and provide well-suited benchmark problem to test novel ideas such as the use

of operator-splitting techniques which seems to be new in this context (albeit extensively

used for the numerical solution of problems in fluid mechanics). The variational

inequality approach used in this article has been applied to the solution of a variety of

friction problems in, e.g., [3] and [18]. The solution of closely related friction problems

by other techniques is discussed in, e.g. [7], [8], [9], [10] and [19].

2. Modeling of friction constrained motions: Splitting of the model

Some remote manipulator system simulators use finite number of degree of freedom

models, like the one below to describe friction constrained motions:
{

MẌ + AX + C(sgn(Ẋ) − γ(Ẋ)) = f on (0, T ),

X(0) = X0, Ẋ(0) = V0,
(1)

where in equation (1):

(i) X is a displacement (here X(t) ∈ Rd),

(ii) the mass matrix M is symmetric and positive definite,

(iii) the stiffness matrix A is symmetric and positive semi-definite,
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(iv) the friction matrix C is diagonal, i.e. C = diag(c1, · · · , cd), with ci ≥ 0,∀i = 1, · · · , d
and

∑d
i=1 ci > 0,

(v) sgn(V ) = {sgn(vi)}d
i=1, ∀ V = {vi}d

i=1 ∈ Rd,

(vi) γ(V ) = {γi(vi)}d
i=1, ∀ V = {vi}d

i=1 ∈ Rd, γi being a nondecreasing Lipschitz

continuous function vanishing at 0 and such that limξ 7→±∞ γi(ξ) = ±βi, with

0 < βi < 1,

(vii) f is an external force such that f ∈ L2
loc(0, T ;Rd), T ∈ (0,+∞],

(viii) X0 and V0 belong both to Rd.

Remark 2.1: The case γ = 0 has been discussed in refs. [1] and [2]. Typical functions

γi are provided (with εi > 0) by

γi(ξ) =
βiξ√
ε2
i + ξ2

(2)

and

γi(ξ) =

{
βiξ/εi if |ξ| ≤ εi,

βisgn(ξ) if |ξ| ≥ εi.
(3)

Operator γ has been introduced to take into consideration the following well-known fact:

When there is dry friction, the force necessary to put the system into motion, starting

from rest, is higher than the one necessary to maintain the motion. For ”simplicity”,

we shall assume from now on that ci > 0,∀i = 1, · · · , d.

The function sgn Ẋ
|Ẋ| makes sense at those values of t where ˙X(t) 6= 0; On the other

hand, it makes no sense for t such that Ẋ(t) = 0. Actually, mechanical considerations

(see, e.g., [3] and [19] for details, concerning the solution of related contact problems)

lead to substitute to (1) the following system




MẌ + AX + Cλ − Cγ(Ẋ) = f on (0, T ),

Cλ(t) · Ẋ(t) =
∑d

i=1 ci|ẋi(t)|, λ(t) ∈ Λ a.e. on (0, T ),

X(0) = X0, Ẋ(0) = V0,

(4)

where in (4), a · b =
∑d

i=1 aibi,∀a = {ai}d
i=1, b = {bi}d

i=1 ∈ Rd,Λ = {µ|µ ∈ Rd, |µi| ≤
1,∀i = 1, · · · , d}, and Ẋ = {ẋi}d

i=1. It is clear that the first equation in (4) coincides

with the corresponding one in (1) for those t such that ˙X(t) 6= 0, but still makes sense

if ˙X(t) = 0.

In (4), the multiplier λ and the vector γ(Ẋ) model the friction forces (via

C(λ − γ(Ẋ))). Proving the existence of a pair {X,λ} verifying (4) is easy; inspired

by ref. [3] (see also ref. [2]), we approximate (4) (and equation (1)) by
{

MẌη + AXη + C(λη − γ(Ẋη)) = f on (0, T ),

Xη(0) = X0, Ẋη(0) = V0,
(5)

with η > 0, and λη = {ẋiη/
√

η2 + ẋ2
iη}d

i=1. Suppose that 0 < T < +∞ and

f ∈ L∞(0, T ;Rd); problem (5) has clearly a unique solution and, using Ascoli’s theorem,
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we can prove that

lim
η→0

{Xη, λη} = {X,λ} in W 2,∞(0, T ;Rd) × L∞(0, T ;Rd) weak − ∗, (6)

where {X,λ} is a solution (necessarily unique) of problem (4). Relation (6) implies that

limη→0 Xη = X in C1([0, T ];Rd). In order to decouple the numerical treatment of the

elasticity and friction terms (AX and C(sgn(Ẋ)−γ(Ẋ)), respectively, here), we observe

that systems (1) and (4) are equivalent to




MV̇ + C(sgn(V ) − γ(V )) + AX = f on (0, T ),

Ẋ = V on (0, T ),

X(0) = X0, V (0) = V0,

(7)

and 



MV̇ + Cλ −Cγ(V ) + AX = f on (0, T ),

Ẋ = V on (0, T ),

Cλ(t) · V (t) =
∑d

i=1 ci|vi(t)|, λ(t) ∈ Λ a.e. on (0, T ),

X(0) = X0, V (0) = V0,

(8)

respectively. Let N be a positive integer and ∆t = T/N ; we denote n∆t by tn.

Among the many possible operator-splitting schemes ”available” to time-discretize (7)

and (8), we advocate the one below, particularly easy to implement (we consider the

discretization of (8) only, (8) being more rigorous than (7)):

X0 = X0, V 0 = V0; (9)

for n = 1, · · · , N,Xn and V n being known, solve




MV̇ + C(λ − γ(V )) = f on (tn, tn+1),

Cλ(t) · V (t) =
∑d

i=1 ci|vi(t)|, λ(t) ∈ Λ a.e. on (tn, tn+1),

Ẋ = 0 on (tn, tn+1),

V (tn) = V n, X(tn) = Xn,

(10)

and set

V n+1/2 = V (tn+1), Xn+1/2 = Xn, (11)

solve 



MV̇ + AX = 0 on (tn, tn+1),

Ẋ = V on (tn, tn+1),

V (tn) = V n+1/2, X(tn) = Xn+1/2,

(12)

and set

V n+1 = V (tn+1), Xn+1 = X(tn+1). (13)

System (12) is equivalent to

{
MẌ + AX = 0 on (tn, tn+1),

X(tn) = Xn+1/2, Ẋ(tn) = V n+1/2,
(14)
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and

Xn+1 = X(tn+1), V n+1 = Ẋ(tn+1). (15)

The numerical solution of the sub-initial value problems (10) and (12), (14) will be

discussed in Sections 3 and 4, respectively.

Remark 2.2:A symmetrized (in the sense of G. Strang [4]) variant of scheme (9)− (13)

reads as follows (with tn+1/2 = (n + 1/2)∆t):

X0 = X0, V 0 = V0; (16)

for n = 1, · · · , N, Xn and V n being known, solve





MV̇ + C(λ − γ(V )) = f on (tn, tn+1/2),

Cλ(t) · V (t) =
∑d

i=1 ci|vi(t)|, λ(t) ∈ Λ a.e. on (tn, tn+1/2),

Ẋ = 0 on (tn, tn+1/2),

V (tn) = V n, X(tn) = Xn,

(17)

V n+1/2 = V (tn+1/2), Xn+1/2 = Xn, (18)





MV̇ + AX = 0 on (0,∆t),

Ẋ = V on (0,∆t),

V (0) = V n+1/2, X(0) = Xn+1/2,

(19)

V̂ n+1/2 = V (∆t), X̂n+1/2 = X(∆t), (20)




MV̇ + C(λ − γ(V )) = f on (tn+1/2, tn+1),

Cλ(t) · V (t) =
∑d

i=1 ci|vi(t)|, λ(t) ∈ Λ a.e. on (tn+1/2, tn+1),

Ẋ = 0 on (tn+1/2, tn+1),

V (tn+1/2) = V̂ n+1/2, X(tn+1/2) = X̂n+1/2,

(21)

V n+1 = V (tn+1), Xn+1 = X̂n+1/2. (22)

Remark 2.3: An interesting discussion, and comparisons of various kinetic friction

models, can be found in [9, 10]. We definitely think that the computational methods

discussed in the present article can be generalized to the treatment of some of the mod-

els discussed in the above references.

Remark 2.4: The following model (with g > 0)



1
c2

∂2u
∂t2

− ∂2u
∂x2 + gλ = 0 in (0, L) × (0, T ),

λ∂u
∂t

= |∂u
∂t
|, |λ| ≤ 1 in (0, L) × (0, T ),

u(0, t) = u(L, t) = 0 in (0, T ),

u(x, 0) = u0(x), ∂u
∂t

(x, 0) = u1(x),

(23)



6

describes the friction constrained planar motion of an elastic string. This nonlinear

wave model has been thoroughly analyzed in [7], [8], while its numerical simulation and

boundary control have been discussed in [2] and [6]. After appropriate finite difference

or finite element discretizations (23) leads to problems such as (1), with γ = 0.

3. Numerical solution of type (10) subproblems

3.1. Time-discretization of system (10)

Problem (10) is a special case of




MẆ + C(λ − γ(W )) = f on (t0, tf),

Cλ(t) · W (t) =
∑d

i=1 ci|wi(t)|, λ(t) ∈ Λ a.e. on (t0, tf),

W (t0) = W0.

(24)

Suppose that f ∈ L∞(t0, tf ;R
d); then problem (24) has a unique solution in

W 1,∞(t0, tf ;R
d)×L∞(t0, tf ;R

d). Let P be a positive integer and denote (tf − t0)/P by

τ1. In order to time-discretize (24), we advocate the following implicit-explicit scheme:

W 0 = W0; (25)

for p = 1, · · · , P,W p−1 being known solve
{

M W p−W p−1

τ1
+ C λp = Cγ(W p−1) + fp,

C λp · W p =
∑d

i=1 ci|wp
i |, λp ∈ Λ,

(26)

where fp = f(t0+pτ1) (or an approximation of it). Concerning the solvability of problem

(26), we have the following:

Theorem 3.1 Problem (26) has a unique solution {W p, λp}.

Proof: Denote by bp the vector MW p−1 +τ1Cγ(W p−1)+τ1f
p; problem (26) takes then

the following form:
{

MW p + τ1C λp = bp,

C λp · W p =
∑d

i=1 ci|wp
i |, λp ∈ Λ.

(27)

Define j : Rd 7→ R by

j(V ) =
d∑

i=1

ci|vi|, ∀V = {vi}d
i=1 ∈ Rd; (28)

since ci > 0,∀i, functional j(·) is convex over Rd. Next, take the scalar product with

(V − W P ) of both sides of the first equation in (27). We have then

MW p · (V −W p)+ τ1(Cλp ·V −Cλp ·W p) = bp · (V −W p), ∀V ∈ Rd.(29)

Observing that

Cλp · W p = j(W p), (30)
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and (from λp ∈ Λ)

Cλp · V =
d∑

i=1

ciλ
p
i vi ≤

d∑

i=1

ci|vi| = j(V ),∀V ∈ Rd, (31)

it follows from (29)-(31) that
{

W p ∈ Rd,

MW p · (V − W p) + τ1(j(V ) − j(W p)) ≥ bp · (V − W p),∀V ∈ Rd.
(32)

Observing that M = M t, it follows from, e.g. [5] and [11] that (32) characterizes W p

as the solution of the minimization problem
{

W p ∈ Rd,

J(W p) ≤ J(V ), ∀V ∈ Rd,
(33)

where J : Rd 7→ R is defined by

J(V ) =
1

2
MV · V + τ1j(V ) − bp · V, ∀V ∈ Rd. (34)

By convexity argument (see again [5], [11]), we can show that M positive definite implies

that problem (33) has a unique solution characterized by the existence of λp ∈ Λ, so

that relation (27) holds. The uniqueness of W p and the existence of C−1 implies the

uniqueness of λp.

If f ∈ C0([t0, tf ];R
d), we can easily show that ∀τ1(i.e.,∀P ) we have

{
‖W p‖Rd ≤ ‖W 0‖Rd + ‖M−1‖(2

√
d‖C‖+ ‖f‖∞)(tf − t0)

∀p = 1, · · · , P,
(35)

namely, the unconditional stability of scheme (25) - (26). Using, once more, compactness

arguments, we can show that

lim
τ1→0

max1≤p≤P‖W p − W (t0 + pτ1)‖Rd = 0. (36)

Remark 3.1: Define λτ1 by λτ1 =
∑P

p=1 λpχp where χp is the characteristic function

of (t0, tf) ∩ (t0 + τ1(p − 1/2), t0 + τ1(p + 1/2)). We have then λτ1 ∈ Λ̃ = {µ|µ ∈
L∞(t0, tf ;R

d), ‖µ(t)‖Rd ≤ 1, a.e. on (t0, tf)}. Combining (26) and (36), with the fact

that Λ̃ is compact for the weak-* topology of L∞(t0, tf ;R
d), we can prove (relatively

easily) that limτ1→0 λτ1 = λ in L∞(t0, tf ;R
d) weak-*. Improving over the above con-

vergence result is difficult since λp in (26) is a subgradient at W p of the functional j(.)

defined by (28), i.e. λp = ∂j(W p), with the subgradient operator ∂j(.) multivalued, i.e.

discontinuous.

Remark 3.2: Suppose that problem (24) is a sub-problem coming from the time-

discretization by operator-splitting of an initial value problem such as (1). Then, we

have, typically, t0 = tn(= n∆t) and tf = tn+1(= (n + 1)∆t). There is, clearly, no ambi-

guity concerning the definition of Xn+1/2 and V n+1/2. On the other hand, we have to be
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careful when defining the friction multiplier λn+1/2; actually, a close inspection shows

that we should define λn+1/2 by

λn+1/2 = (

P∑

p=1

λn+1/2,p)/P, (37)

where {λn+1/2,p}P
p=1 is the set of the friction multipliers encountered when solving

problem (10) via scheme (25), (26). ♦

3.2. Iterative Solution of System (27)

Dropping the superscripts p, problem (27) takes the following form:
{

MW + τ1C λ = b,

C λ · W =
∑d

i=1 ci|wi|, λ ∈ Λ.
(38)

If d = 1 computing the closed form solution of problem (38) is quite easy (see Remarks

3.3 below). On the other hand, if d ≥ 2, then we must rely on iterative techniques. A

simple one is provided by the following algorithm

λ0 given in Λ; (39)

for k ≥ 0, λk being known, solve

MW k = b − τ1Cλk (40)

and update λk via

λk+1 = PΛ(λk + ρCW k). (41)

In (41), the projection operator PΛ : Rd → Λ is defined by

PΛ(µ) = {min(1,max(−1, µi))}d
i=1, ∀µ = {µi}d

i=1 ∈ Rd. (42)

Set Λ being closed, convex (and non-empty), operator PΛ is a contraction. Concerning

the convergence of algorithm (39)-(41), we then have the following

Theorem 3.2 Suppose that

0 < ρ <
2

τ1βd

, (43)

where βd is the largest eigenvalue of matrix M−1C2; we have then, ∀λ0 ∈ Λ,

lim
k→+∞

{W k, λk} = {W,λ}, (44)

where {W,λ} is the solution of system (38).

Proof: : The proof is a fairly classical one (see, e.g.,[5] and the references therein).

In order to avoid tedious reference consultation by the readers, we are going to give

this proof in extenso in this article. The key point is to observe that an equivalent

formulation of (38) is given by
{

MW + τ1C λ = b

λ = PΛ(λ + ρCW ), ∀ρ > 0.
(45)
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Showing that (45) holds is very easy: we have, from (38),

CW · (µ − λ) = CW · µ −
d∑

i=1

ci|wi|

=

d∑

i=1

ciµiwi −
d∑

i=1

ci|wi|

≤
d∑

i=1

ci|µi||wi| −
d∑

i=1

ci|wi|

≤
d∑

i=1

ci|wi| −
d∑

i=1

ci|wi| = 0, ∀µ ∈ Λ.

Relation CW · (µ − λ) ≤ 0,∀µ ∈ Λ, implies{
(λ + ρCW − λ) · (µ − λ) ≤ 0,∀µ ∈ Λ,∀ρ > 0,

λ ∈ Λ.

We have thus (see, e.g., [11])

λ = PΛ(λ + ρCW ),∀ρ > 0. (46)

Conversely, if the equation in (46) holds for an arbitrary positive value of ρ, then (38)

takes place, justifying therefore replacing (38) by (45). Denote W k −W and λk − λ by

W
k

and λ
k
, respectively. Since operator PΛ is a contraction it follows from (40), (41)

and (45) that

MW
k

= −τ1Cλ
k

(47)

and

‖λk+1‖Rd ≤ ‖λk
+ ρCW

k‖Rd . (48)

Combining (47) with (48), we obtain

‖λk‖2
Rd − ‖λk+1|2Rd ≥ 2ρτ−1

1 MW
k ·W k − ρ2‖CW

k‖2
Rd. (49)

Recall that ‖CV ‖2 ≤ βdMV · V, ∀V ∈ Rd, with βd the largest eigenvalue of M−1C2. It

follows then from (49) that

‖λk‖2
Rd − ‖λk+1|2Rd ≥ ρ(2/τ1 − ρβd)MW

k · W k
. (50)

Suppose that condition (43) holds. It follows from (50) and from the positivity of ma-

trix M that the sequence {‖λk‖2
Rd}k≥0, is decreasing; since it has 0 as lower bound,

it converges implying that lim(‖λk‖2
Rd − ‖λk+1|2

Rd) = 0, which implies in turn that

limk→+∞ W k = W and (from (47)) that limk→+∞ λk = λ. The convergence result (44)

has been proved.

Remark 3.3: Suppose that d = 1; with obvious notation, problem (26) reduces to{
mwp + τ1cλ

p = mwp−1 + τ1cγ(wp−1) + τ1f
p,

λpwp = |wp|, |λp| ≤ 1.
(51)
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An alternative formulation is given by

mwp + τ1csgn(wp) = mwp−1 + τ1cγ(wp−1) + τ1f
p. (52)

Function ξ → mξ + cτ1sgn(ξ) being strictly monotone with range R, problems (51)

and (52) have unique solutions, ∀τ1(≤ tf − t0); we have{
wp = 0 if |bp| ≤ cτ1,

wp = (bp − cτ1sgn(bp))/m if |bp| ≥ cτ1,
(53)

with bp = mwp−1 + cτ1γ(wp−1) + τ1f
p. Once wp is known, we obtain λp from the

first equation in (51) followed by a ”projection” on the interval [−1, 1]. Actually, some

important applications take place in one-space dimension; one of them is the so-called

”gear box efficiency problem”, a variant of problem (24) defined as follows:{
mẇ + c(sgn(w) − γ(w)) + k(δ)g(δw) = f on (t0, tf),

w(t0) = w0,
(54)

where in (54): (i) Parameter δ is given in R. (ii) k(·) is an increasing odd function of δ

vanishing at 0 and Lipschitz continuous over R. (iii)Function g is of the following form:

g(ξ) =
a + b

2
+

b − a

2
[sgn(ξ) − γab(ξ)]

with 0 < a < b and function γab of the same type than γ (see Section 2 for details). The

monotonicity, ∀δ ∈ R, of operator w → k(δ)sgn(δw), is the property making the above

generalization possible.

Remark 3.4: Numerical experiments show that algorithm (39)-(41) performs slowly,

in general. In order to speed-up the solution of the pure friction problems, we will

introduce in Section 6 a penalty/Newton method closely related to the one discussed in

[13] and [14] for the solution of time dependent obstacle problems.

4. Numerical solution of type (12), (14) subproblems

Problems (12),(14) are very classical ones. We shall briefly discuss their solution by

(well-known) finite difference schemes. Let Q be a positive integer and denote ∆t/Q by

τ2. With obvious notation (and 0 ≤ α ≤ 1/2), we approximate problem (14) by

Xn+1,0 = Xn+1/2, Xn+1,1 − Xn+1,−1 = 2τ2V
n+1/2; (55)

for q = 0, · · · , Q,Xn+1,q and Xn+1,q−1 being known, solve:

M Xn+1,q+1+Xn+1,q−1−2Xn+1,q

τ2
2

+ A(αXn+1,q+1 + (1 − 2α)Xn+1,q + αXn+1,q−1) = 0,
(56)

Xn+1 = Xn+1,Q, V n+1 = (Xn+1,Q+1 − Xn+1,Q−1)/2τ2. (57)

It is well known (see, e.g., [1], [2], [12] and the references therein) that scheme (55), (56)

is unconditionally stable if 1/4 ≤ α ≤ 1/2; if 0 ≤ α < 1/4, one has stability provided that

τ2 < 1/
√

(1/4 − α)νd, νd being the largest eigenvalue of matrix M−1A (i.e., τ2 < 2/
√

νd

if α = 0).
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5. Numerical experiments

In order to validate the methodology discussed in the above sections, we are going to

apply it to four test problems. The first two test problems correspond to d = 1, while

the third one corresponds to d = 2 and the fourth one corresponds to d = 3. These four

test problems all have closed form solutions.

5.1. First test problem

The pure friction problem that we consider is a particular case of problem (24) which

reads as follows:{
mẇ + c(sgn(w) − γ(w)) = f on (t0, tf),

w(t0) = w0,
(58)

or (preferably)




mẇ + c(λ − γ(w)) = f on (t0, tf),

λw = |w|, |λ| ≤ 1 on (t0, tf),

w(t0) = w0.

(59)

The numerical experiments have been carried out with t0 = 0, tf = 2,m = 1, c =

0.5, w0 = 0, and γ defined by (3) with β = 1/3 and ε = 1/10; the forcing term is given

by

f(t) =

{
2πmcos2πt + c[1 − γ(sin2πt)] if t ∈ (0, 1/2) ∪ (1, 3/2),

0 if t ∈ (1/2, 1) ∪ (3/2, 2).

With such f and w0, the unique solution of problem (58), (59) is given by w(t) =

(sin2πt)+(= max(0, sin2πt)),∀t ∈ [0, 2], and λ(t) = 1 if t ∈ (0, 1/2) ∪ (1, 3/2), λ(t) = 0

if t ∈ (1/2, 1) ∪ (3/2, 2). On figure 1, we have shown the graphs of the approximate

w computed with ∆t = 10−2 and 10−3. On figure 2, we have shown the graphs of

the approximated friction multiplier λ (as defined in Remark 3.1) computed for the

two different values of ∆t. Finally, on figure 3, we have represented on a log-scale the

variation of the L2-approximation error on w as a function of ∆t; this figure clearly

”suggests” first order accuracy, for this test problem at least (the convergence of λ is

obviously not as good).

5.2. Second test problem

The second test problem that we consider is defined by
{

mẍ + kx + c(sgn(ẋ) − γ(ẋ)) = f on (t0, tf),

x(t0) = x0, ẋ(t0) = v0.
(60)
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Figure 1. Test prob. 1: (left) the computed w(t) with ∆t = 10−2; (right) the
computed w(t) with ∆t = 10−3
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Figure 2. Test prob. 1: (left) the computed λ(t) with ∆t = 10−2; (right) the
computed λ(t) with ∆t = 10−3

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Figure 3. Test prob. 1: variation of the L2-error on w versus ∆t in log-scale

In (60), we take t0 = 1, tf = 3,m = 1, c = 0.2, k = 1, x0 = 0, v0 = 0 and γ is as in

Section 5.1; this time, the forcing term is given by

f(t) =





8mπ2cos4πt + ksin22πt + c[1 − γ(2πsin4πt)], if t ∈ (1, 5/4) ∪ (2, 9/4),

8mπ2cos4πt + ksin22πt − c[1 + γ(2πsin4πt)], if t ∈ (5/4, 3/2) ∪ (9/4, 5/2),

−c/2 if t ∈ (3/2, 2) ∪ (5/2, 3).
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Figure 4. Test prob. 2: (left) the computed x(t); (middle) the computed v(t) = ẋ;
(right) the computed λ(t)
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Figure 5. Test prob. 2: (left) L2-error on x: variation versus ∆t in log-scale; (right)
L2-error on v: variation versus ∆t in log-scale

For the above data, the solution of problem (60) is given by x(t) = (sin2πt)+2,∀t ∈ [1, 3],

while the corresponding function λ is given by

λ(t) =





1, if t ∈ (1, 5/4) ∪ (2, 9/4),

−1, if t ∈ (5/4, 3/2) ∪ (9/4, 5/2),

−1
2
, if t ∈ (3/2, 2) ∪ (5/2, 3).

To solve problem (60), we have used the splitting scheme (9)− (13), the subproblems (10)

and (12) being solved via schemes (25), (26) and (55)− (57), respectively. The following

results have been obtained with τ1 = ∆t/10 and τ2 = ∆t/2. On figure 4 , we have

shown the graphs of the approximation of x, ẋ, and λ, respectively, all obtained with

∆t = 10−3. On figure 5, we have shown the L2-error, in x and ẋ, as functions of ∆t in

log-scale. As in Section 5.1, we still have first order accuracy.

5.3. Third test problem

The third test problem is multidimensional with d = 2. It is defined as follows:



MẌ + AX + C(λ − γ(Ẋ)) = f on (t0, tf),

|λi| ≤ 1, ∀i = 1, 2, λ · Ẋ = |Ẋ |,
X(0) = X0, Ẋ(0) = V0,

(61)

with
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• M =

(
2 1

1 2

)
, A =

(
2 −1

−1 2

)
, C = I,

• γ = 0,

• f = {fi}2
i=1, where

f1(t) =





2(t − t2

2
) − 1 if 0 ≤ t ≤ 1,

1 + (t− 3
2
) if 1 ≤ t ≤ 2,

3t3 − 23t2 + 70t − 238
3

if 2 ≤ t ≤ 3,
t3

3
− 3t2 + 6t − 17

6
if 3 ≤ t ≤ 4,

and

f2(t) =





t2

2
− 2t if 0 ≤ t ≤ 1,

1
2
− t if 1 ≤ t ≤ 2,

−2t3 + 16t2 − 36t + 163
6

if 2 ≤ t ≤ 3,
−2
3

t3 + 6t2 − 20t + 175
6

if 3 ≤ t ≤ 4.

• X0 = {0, 0}, V0 = {1, 0}.
For the above data, the solution of problem (61) is given by

x1(t) =





t− t2

2
if 0 ≤ t < 1,

1
2

if 1 ≤ t < 2,
1
2

+ 4[1
3
(t3 − 8) − 5

2
(t2 − 4) + 6(t − 2)] if 2 ≤ t < 3,

−1
6

if 3 ≤ t ≤ 4,

and

x2(t) =

{
0 if 0 ≤ t < 2,

(t − 2) − 1
3
((t− 3)3 + 1) if 2 ≤ t ≤ 4,

while the corresponding function λ is given by

λ1(t) =





1 if 0 ≤ t < 1,

t − 3
2

if 1 ≤ t ≤ 2,

−1 if 2 < t < 3,
−1
2

if 3 < t < 4.

and

λ2(t) =

{
1 − t if 0 ≤ t ≤ 2,

1 if 2 ≤ t ≤ 4.

To solve problem (61), we have used the splitting scheme (9)−(13), the subproblems (10)

and (12) being solved via schemes (25), (26) and (55)−(57), respectively. The following

results have been obtained with τ1 = ∆t/10, and τ2 = ∆t/2. On figures 6-8, we have

shown the graphs of the approximation of λ, Ẋ, and X, respectively, all obtained with

∆t = 10−3.

For the same data, let γ = {γi}2
i=1 be defined as in (3), with βi = 1

3
and

εi = 10−2, i = 1, 2. We then have the solutions visualized in figures 9-11. We observe

that the computed discrete multipliers do not exhibit spurious oscillation, as it is the

case with other discretization schemes (see ref. [1]). Finally, we have shown in figure 12

the variation of the approximation error on X,V, λ as functions of ∆t in log-scale.
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Figure 6. Test prob. 3 (γ = 0): (left) the computed x1; (right) the computed x2
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Figure 7. Test prob. 3 (γ = 0):(left) the computed v1; (right) the computed v2
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Figure 8. Test prob. 3 (γ = 0):(left) the computed λ1(t); (right) the computed λ2(t)
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Figure 9. Test prob. 3 (γ 6= 0):(left) the computed x1(t); (right) the computed x2(t)
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Figure 10. Test prob. 3 (γ 6= 0):(left) the computed v1(t); (right) the computed v2(t)
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Figure 11. Test prob. 3 (γ 6= 0):(left) the computed λ1(t); (right) the computed λ2(t)
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Figure 12. Test prob. 3 (γ 6= 0): (left) L2-error on Ẋ versus τ in log-scale; (middle)
L2-error on X versus τ in log-scale; (right) L2-error on λ versus τ in log-scale

5.4. Fourth test problem

We will describe in this section the numerical results obtained when applying the

methodology of the previous sections to a 3-degree of freedom model problem (1),(4).

We take T = 4 and

• the mass matrix M =




1 0 0

0 2 0

0 0 3


, the friction matrix C = 10I, the stiffness

matrix A = 0 and γ = 0,

• the external forcing term f = {fi}3
i=1, where fi(t) = −20e−4t.

• X0 = {1, 2, 3}, V0 = {1, 1, 1}.
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Figure 13. Test prob. 4: (left) the computed x1(t); (middle) the computed x2(t);
(right) the computed x3(t)
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Figure 14. Test prob. 4: (left) the computed v1(t); (middle) the computed v2(t);
(right) the computed v3(t)
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Figure 15. Test prob. 4: (left) the computed λ1(t); (middle) the computed λ2(t);
(right) the computed λ3(t)

To solve problem (1), we have used the same schemes and steps as for the second test

problem. On figures 13-15, we have shown the graphs of the approximation of Ẋ, X,

λ, respectively, obtained using ∆t = 0.003. Based on the previous two test problems,

a first order accuracy is expected for this test problem as well. As in Section 5.3, we

observe that the computed discrete multipliers do not exhibit spurious oscillations.

5.5. Comments on the convergence of algorithm (39)-(41)

While reporting the numerical experiments whose results are shown in Sections 5.3 and

5.4, we did not provide the number of iterations of algorithm (39)-(41) that it takes to
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solve the problems (26). Actually, ”most of the time”, algorithm (39)-(41) performed

slowly (more than one hundred iterations was not uncommon). In order to achieve

faster convergence in the solution of problems (26), we are going to apply a variant of

the penalty/Newton methodology discussed in [13] and [14] (for the solution of time

dependent obstacle problems).

6. A penalty/Newton method for the solution of problems (26)

6.1. Reduction to an obstacle problem in Rd

All the problems (26) being particular cases of problem (38), we will focus on the solution

of this last problem. First of all, we observe that problem (38) is equivalent to




{W,λ} ∈ Rd × Λ,

MW + τ1Cλ = b,

−CW · (µ − λ) ≥ 0, ∀µ ∈ Λ.

(62)

Eliminating W from (62), we obtain the following equivalent variational formulation of

problem (38)
{

λ ∈ Λ,

τ1CM−1Cλ · (µ − λ) ≥ CM−1b · (µ − λ), ∀µ ∈ Λ.
(63)

Problem (63) is an obstacle problem in Rd; it belongs to the class finite or infinite

dimensional variational inequalities discussed in, e.g., [3], [5] and [16]. The numerical

solution of discrete obstacle problems such as (63) has motivated a huge literature.

Considering the time dependent nature of the problem leading to (38), we are going to

apply to the solution of this last problem the penalty/Newton methodology developed

in [13] (see also [14]) for the solution of parabolic variational inequalities of the obstacle

type. Penalty techniques have also been applied to the solution of obstacle problem in

Finite Elasticity (see, e.g., [15] and the references therein).

From now on, we will denote the symmetric positive definite matrix τ1CM−1C by

A and the vector CM−1b by β. Problem (63) takes then the following form
{

λ ∈ Λ,

Aλ · (µ − λ) ≥ β(µ − λ), ∀µ ∈ Λ.
(64)

The matrix A being symmetric and positive definite, problem (64) is equivalent to
{

λ ∈ Λ,

j(λ) ≤ j(µ), ∀µ ∈ Λ,
(65)

with the functional j : Rd 7→ R defined by

j(µ) =
1

2
Aµ · µ − β · µ, ∀µ ∈ Rd. (66)
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6.2. Penalty approximation of problem (64),(65)

Following [13] and [14], we use penalty to approximate problem (64),(65) by{
λε ∈ Rd,

jε(λε) ≤ jε(µ), ∀µ ∈ Rd,
(67)

with ε a ”small” positive parameter and

jε(µ) = j(µ) +
1

3ε

d∑

i=1

[((µi − 1)+)3 + ((µi + 1)−)3], (68)

we recall that ξ+ = max(0, ξ), ξ− = −min(0, ξ). The function jε being strictly

convex,C2 and verifying lim‖µ‖7→+∞ jε(µ) = +∞, problem (67) has a unique solution

characterized by

j′ε(λε) = 0, (69)

with j′ε(.) the differential of the function of jε(.). Namely,

j′ε(µ) = Aµ − β +
1

ε
[((µ − 1)+)2 − ((µ + 1)−)2], ∀µ ∈ Rd, (70)

where ((µ − 1)+)2 (respectively ((µ + 1)−)2) is a symbolic notation for the vector

{((µi − 1)+)2}d
i=1 (respectively {((µi +1)+)2}d

i=1 ). The solution of the nonlinear system

(69) will be discussed in the following section.

6.3. A Newton’s algorithm for the solution of problem (69)

Let us denote j′ε(·) by Fε(·), implying that the nonlinear system (69) reads now as

follows:

Fε(λε) = 0. (71)

In order to solve problem (71), we will use a Newton’s algorithm as advocated in [13],

[14] for other obstacle problems. It follows from, e.g., [17] that a Newton’s algorithm

for the solution of problem (71) is given by:

λ0
ε ∈ Rd; (72)

for k ≥ 0, λk
ε being known, we obtain λk+1

ε from:

λk+1
ε = λk

ε − (F ′
ε(λ

k
ε ))

−1Fε(λ
k
ε ); (73)

In (73), the matrix-valued function F ′
ε is defined by

F ′
ε(µ) = A +

2

ε
[(µ − 1)+ + (µ + 1)−], ∀µ ∈ Rd, (74)

where, in (74), (µ− 1)+ (resp., (µ + 1)−) is a symbolic notation for the diagonal matrix



(µ1 − 1)+ 0
. . .

(µi − 1)+

. . .

0 (µd − 1)+



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(resp.,



(µ1 + 1)− 0
. . .

(µi + 1)−

. . .

0 (µd + 1)−




). The two above diagonal matrices are positive semi-definite, matrix F ′
ε(µ) is positive

symmetric and positive definite, for all µ ∈ Rd, which implies in turn that one can

use the method of Cholesky to compute the vector (F ′
ε(λ

k
ε ))

−1F (λk
ε ). Concerning the

choice of λ0
ε in the context of the solution of problem (26), we advocate taking for λ0

ε the

multiplier solution at the previous time step. The convergence of Newton’s algorithms

such as (72) and (73) is discussed in [17].

6.4. Numerical Experiments

6.4.1. Fifth test problem The fifth test problem is also multidimensional with d = 3;

it is defined as follows:



MẌ + AX + C(λ − γ(Ẋ)) = f on (t0, tf),

|λi| ≤ 1, ∀i = 1, 2, 3, λ · Ẋ = |Ẋ|,
X(0) = X0, Ẋ(0) = V0,

(75)

with

• M =




2 1 0

1 2 1

0 1 1


, A =




2 −1 0

−1 2 −1

0 −1 2


, C = I,

• γ 6= 0, as previously defined in (3),

• f = {fi}3
i=1, where

f1(t) =





−1 + 2t − t2 − γ(1 − t) if 0 ≤ t ≤ 1,

1 + (t− 3
2
) − γ(0) if 1 ≤ t ≤ 2,

−78 + 70t − 23t2 + 3t3 − γ(4(t − 3)(t − 2)) if 2 ≤ t ≤ 3,

−1 − 1
2
− 3t2 + 6t + t3

3
− γ(0) if 3 ≤ t ≤ 4,

f2(t) =





−t + t2

2
− γ(0) if 0 ≤ t ≤ 1,

2t − 2t − t2

2
− γ(0) if 1 ≤ t ≤ 2,

−2t3 + 16t2 − 36t + 26 − γ(1 − (t − 3)2) if 2 ≤ t ≤ 3,

10 − 5t + 2t2 − t3

3
− γ(1 − (t− 3)2) if 3 ≤ t ≤ 4,

and

f3(t) =





−1 − 2t − γ(t − 2) if 0 ≤ t ≤ 1,

1 − 4t + t2 − γ(t − 2) if 1 ≤ t ≤ 2,
−14+18t−9t2+t3

3
− γ(0) if 2 ≤ t ≤ 3,

106
3

− 24t + 5t2 − t3

3
− γ(1 − (t − 4)2) if 3 ≤ t ≤ 4.
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• X0 = {0, 0, 0}, V0 = {1, 0,−1}.

With these data, the exact solution of this test problem is given by:

x1(t) =





1 − t if 0 ≤ t < 1,

0 if 1 ≤ t < 2,

4(t − 3)(t − 2) if 1 ≤ t < 2,

0 if 2 ≤ t < 3,

x2(t) =

{
0 if 0 ≤ t < 2,

1 − (t− 3)2 if 2 ≤ t < 4,

and

x3(t) =





−1 if 0 ≤ t < 1,

t− 2 if 1 ≤ t < 2,

0 if 1 ≤ t < 2,

1 − (t− 4)2 if 2 ≤ t < 3,

while the corresponding function λ is given by

λ1(t) =





1 if 0 ≤ t < 1,

t − 3
2

if 1 ≤ t ≤ 2,

−1 if 2 < t < 3,
−1
2

if 3 < t < 4,

λ2(t) =

{
1 − t if 0 ≤ t < 2,

1 if 3 ≤ t ≤ 4,

and

λ3(t) =





−1 if 0 ≤ t ≤ 2,

(5 − 2t) if 2 ≤ t ≤ 3,

1 if 3 ≤ t ≤ 4.

Taking V = Ẋ as unknown function, problem (75) reads as follows:




MV̇ + AX + C(λ − γ(V )) = f on (0, T ),

Ẋ = V on (0, T ),

|λi| ≤ 1, ∀i = 1, 2, 3, λ · V = |V |,
X(0) = X0, V (0) = V0.

(76)

Scheme (9)−(13), with T = 4 and ∆t = 0.008, was applied to the solution of prob-

lem (76), the corresponding problems (26) being solved by the penalty/Newton method

discussed above with ε = 10−4. No more than 4 Newton’s iterations were required at

each time-step, making this approach much faster than the one based on algorithm

(39)−(41). The results are reported in figures, where we show the graphs of the com-

puted x1, x2, x3 (figure 16), v1, v2, v3 (figure 17) and of λ1, λ2, λ3 (figure 18). The varia-

tions of the approximation errors versus ∆t in log-scale, are reported in figure 19.
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Figure 16. Test prob. 5: (left) the computed x1(t); (middle) the computed x2(t);
(right) the computed x3(t)
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Figure 17. Test prob. 5: (left) the computed v1(t); (middle) the computed v2(t);
(right) the computed v3(t)
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Figure 18. Test prob. 5: (left) the computed λ1(t); (middle) the computed λ2(t);
(right) the computed λ3(t)
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Figure 19. Test prob. 5: (left) L2-error on Ẋ versus τ in log-scale; (middle) L2-error
on V̇ versus τ in log-scale; (right) L2-error on λ versus τ in log-scale
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