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Abstract

Hudspeth, Magnasco, and collaborators have suggested that the auditory
system works by tuning a collection of hair cells near Hopf bifurcation, but
each with a different frequency. An incoming sound signal to the cochlea then
resonates most strongly with one of these hair cells, which then informs the
auditory neuronal system of the frequency of the incoming signal. In this paper
we discuss two mathematical issues. First, we describe how periodic forcing of
systems near a point of Hopf bifurcation is generally more complicated than
the description given in these auditory system models. Second, we discuss
how the periodic forcing of coupling identical systems whose internal dynamics
is each tuned near a point of Hopf bifurcation leads naturally to successive
amplification of the incoming signal. We call this coupled system a feed-forward

chain and suggest that it is a mathematical candidate for a motif.

1 Introduction

In this paper we discuss how the periodic forcing of the first node in a chain of cou-
pled identical systems, whose internal dynamics is each tuned near a point of Hopf
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bifurcation, can lead naturally to successive amplification of the incoming signal. We
call this coupled system a feed-forward chain and suggest that it is a mathematical
candidate for a motif [1]. Periodic forcing of these chains was considered experi-
mentally by McCullen et al. [26]. That study contained observations concerning the
amplitude response of solutions down the chain and the effectiveness of the chain as
a filter amplifier. This paper sheds light on these observations.

Our observations motivate the need for a theory of periodic forcing of systems
tuned near a point of Hopf bifurcation. Given such a system with Hopf frequency
ωH , we periodically force this system at frequency ωf . The response curve is a graph
of the amplitude of the resulting solution as a function of ωf . In this paper we show
that the response curve will, in general, be asymmetric and may even have regions of
multiple responses when ωf ≈ ωH .

This second set of results has implication for certain models of the auditory system,
in particular, models of the basilar membrane and attached hair bundles. Several
authors [5, 6, 7, 21, 23, 27, 28] model the hair bundles by systems of differential
equations tuned near a point of Hopf bifurcation; however, in their models they
assume precisely the nongeneric condition that leads to a symmetric response curve.
Since asymmetric response curves are seen experimentally, these authors then attempt
to explain that the asymmetry follows from coupling of the hair bundles. Although
this coupling may be reasonable on physiological grounds, our results show that it is
not needed if one were only attempting to understand the observed response curve
asymmetry.

Sections 2-3 discuss the feed-forward chain and Sections 4-5 discuss periodic forc-
ing of systems near Hopf bifurcation and the auditory system. The remainder of this
introduction describes our results in more detail.

The theory of coupled systems of identical differential equations [31, 16, 15] and
their bifurcations [12, 24, 8, 11] singles out one three-cell network for both its sim-
plicity and the surprising dynamics it produces via a synchrony-breaking Hopf bi-
furcation. We have called that network the feed-forward chain and it is pictured in
Figure 1. Note that the arrow from cell 1 to itself represents self-coupling.

1 2 3

Figure 1: The feed-forward chain.

The general coupled cell theory [16] associates to the feed-forward chain a class
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of differential equations of the form

ẋ1 = f(x1, x1, λ)
ẋ2 = f(x2, x1, λ)
ẋ3 = f(x3, x2, λ)

(1.1)

where xj ∈ Rk is the vector of state variables of node j, λ ∈ R is a bifurcation
parameter, and f : Rk×Rk×R → Rk. We assume that the differential equations f in
each cell are identical, and because of this the synchrony subspace S = {x1 = x2 = x3}
is a flow-invariant subspace; that is, a solution with initial conditions in S stays in
S for all time. Synchronous equilibria can be expected to occur in such systems and
without loss of generality we may assume that such an equilibrium is at the origin;
that is, we assume f(0, 0, λ) = 0. Because of the self-coupling in cell 1, each cell
receives exactly one input and the function f can be the same in each equation in
(1.1).

Recall that in generic Hopf bifurcation in a system with bifurcation parameter
λ, the growth in amplitude of the bifurcating periodic solutions is of order λ

1

2 . As
reviewed in Section 2 synchrony-breaking Hopf bifurcation leads to a family of periodic
solutions whose amplitude grows with the unexpectedly large growth rate of λ

1

6 [12, 8].
This growth rate suggests that when the feed-forward chain is tuned near a synchrony-
breaking Hopf bifurcation, it can serve to amplify periodic signals whose frequency ω
is near the frequency of Hopf bifurcation ωH and dampen signals when ω is far from
ωH . This filter-amplifier motif-like behavior is described in Section 3.

Experiments by McCullen et al. [26] with a feed-forward chain consisting of (ap-
proximately) identical coupled electronic circuits whose cells are decidedly not in
normal form but with sinusoidal forcing confirm the band pass filter role that a feed-
forward chain can assume and the expected growth rates of the output. Additionally,
simulations, when the system is in Hopf normal form and the forcing is spiking, also
confirm the behavior predicted for the simplified setup. These results are discussed
in Sections 3.1 and 3.2 and motivate the need for a more general theory of periodic
forcing of systems near Hopf bifurcation. We note that the lack of a general theory
is more than just a question of mathematical rigor.

Analysis and simulation of periodic forcing of systems near Hopf bifurcation often
assume that the forcing is small simple harmonic or sinusoidal forcing εeiωf t and that
the system is in the simplest normal form for Hopf bifurcation (namely, the system
is in third order truncated normal form and the cubic term is assumed to be real).
A supercritical Hopf bifurcation vector field can always be transformed by a smooth
change of coordinates to be in normal form to third order and the cubic term itself can
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be scaled to be −1+ iγ. Simulations of a system in normal form for Hopf bifurcation,
but with γ 6= 0 show phenomena not present in the simplest case. See Section 4.1.
In particular, the amplitude of the response as a function of ωf can be asymmetric
(if γ 6= 0) and have a region of multiple solutions (if |γ| is large enough). Asymmetry
and multiplicity have been noted by several authors. Bogoliubov and Mitropolsky [3]
analyze the sinusoidally forced Duffing equation and find multiplicity as the frequency
of the forcing is varied; Jordan and Smith [10] also analyze the forced Duffing equation
and find multiplicity as the amplitude of the forcing is varied; and Montgomery et

al. [27] see asymmetry in a forced system near Hopf bifurcation.
In Section 4.2 we show that asymmetry in the response curve occurs as ωf is

varied whenever γ 6= 0 and that there are precisely two kinds of response curves. In
Theorem 4.1 we use singularity theoretic methods to prove that multiple solutions
occur in a neighborhood of the Hopf bifurcation precisely when |γ| >

√
3.

Additionally, when ωf is sufficiently close to ωH , Kern and Stoop [23] and Egúıluz
et al. [7] together show that with a truncated normal form system and harmonic

forcing the amplitude of the resulting periodic solution is of order ε
1

3 . We make
this result more precise in Section 4.3. Consequently, in the feed-forward chain the
amplitude of the periodic forcing can be expected to grow as ε

1

3 in the second cell and
ε

1

9 in the third cell. This expectation is observed in the simulations in Section 3.1
even when the forcing is spiking. A general theory for the study of periodic solutions
occurring in a periodically forced system near a point of Hopf bifurcation is being
developed in [34].

The efficiency of band-pass filters are often measured by the Q-factor. We intro-
duce this concept in Section 4.4 and show, in forced normal form systems, that the
Q-factor scales linearly with the Hopf frequency. We verify this point with simula-
tions and note the perhaps surprising observation that spiking forcing seems to lead
to higher Q factors than does sinusoidal forcing.

In recent years many proposed models for the auditory system have relied on
the periodic forcing of systems near points of Hopf bifurcation, and a general theory
for periodic forcing of such systems would have direct application in these models.
In particular, Hudspeth and collaborators [18, 19, 6, 7] have considered models for
the cochlea that consist of periodically forced components that are tuned near Hopf
bifurcation. We discuss these models in Section 5. In particular, we note that an
asymmetry in the experimentally obtained response curves from cochlea is consis-
tent with what would have been obtained in the models if the cubic term in the
Hopf bifurcation was complex. Biophysically based cochlear models are sufficiently
complicated that asymmetry could be caused by many factors. To our knowledge,
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multiple solutions in the cochlear response curve has not been observed; nevertheless,
in Section 5.1 we speculate briefly on the possible meaning of such multiplicity. In
Section 5.2 we briefly discuss some expectations for two-frequency forcing that are
based on simulations

2 Synchrony-Breaking Hopf Bifurcations

We begin with a discussion of Hopf bifurcations that can be expected in systems of
the form (1.1). The coordinates in f(u, v, λ) are arranged so that u is the vector of
internal cell phase space coordinates and v is the vector of coordinates in the coupling
cell. Thus, the k×k matrix α = fu(0, 0, 0) is the linearized internal dynamics and the
k × k matrix β = fv(0, 0, 0) is the linearized coupling matrix. The Jacobian matrix
for (1.1) is

J =





α + β 0 0
β α 0
0 β α



 (2.1)

Synchrony-breaking bifurcations correspond to bifurcations where the center subspace
of J does not intersect the synchrony subspace S. Note that for y ∈ Rk

J





y
y
y



 =





(α + β)y
(α + β)y
(α + β)y





Thus, the matrix of J |S is just α + β and a synchrony-breaking bifurcation occurs if
some eigenvalue of J has zero real part and no eigenvalue of α + β has zero real part.
We focus on the case where the synchrony-breaking bifurcation occurs from a stable
synchronous equilibrium; that is, we assume:

(H1) All eigenvalues of α + β have negative real part.

The lower diagonal block form of J shows that the remaining eigenvalues of J
are precisely the eigenvalues of α repeated twice. The generic existence of double
eigenvalues would be a surprise were it not for the the restrictions placed on J by
the network architecture pictured in Figure 1. Synchrony-breaking Hopf bifurcation

occurs when

(H2) α has simple purely imaginary eigenvalues ±ωHi, where ωH > 0,
and all other eigenvalues of α have negative real part.
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The real part restriction on the remaining eigenvalues just ensures that bifurcation
occurs from a stable equilibrium. In fact, in this paper, we only consider the case
where the internal dynamics in each cell is two-dimensional, that is, we assume k = 2.

It was observed in [12] and proved in [8] that generically synchrony-breaking Hopf
bifurcations lead to families of periodic solutions xλ(t) = (0, xλ

2(t), x
λ
3(t)), where the

cell 2 amplitude |xλ
2 | grows at the expected rate of λ

1

2 and the cell 3 amplitude |xλ
3 |

grows at the unexpected rate of λ
1

6 . Thus, near bifurcation, the amplitude of the third
cell oscillation is much bigger than the amplitude of the second cell oscillation. An
example of a periodic solution obtained by simulation of such a coupled-cell system
near a point of synchrony-breaking Hopf bifurcation is given in Figure 2.
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Figure 2: Periodic solution near a synchrony-breaking Hopf bifurcation in the feed-
forward chain. The first coordinate in each cell is plotted. Cell 1 is constant at 0
(dotted curve); cell 2 is the smaller signal (dashed curve); and cell 3 is the larger
signal (solid curve). See Figure 12 in [12].

The large growth in cell 3 can be understood as a result of resonance in a nonlinear
system. To see this, observe that assumption (H1) implies that x1 = 0 is a stable
equilibrium for the first equation in (1.1). Thus, the asymptotic dynamics of the
second cell is governed by the system of differential equations

ẋ2 = f(x2, 0, λ) (2.2)

Assumption (H2) implies that the system (2.2) undergoes a standard Hopf bifurcation
at λ = 0. In addition, we assume

(H3) (2.2) undergoes a generic supercritical Hopf bifurcation at λ = 0.
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The consequence of assumption (H3) is that for λ > 0 the system (2.2) has a unique
small amplitude stable periodic solution xλ

2(t) whose amplitude grows at the expected

rate λ
1

2 and whose frequency is approximately ωH .
It follows from (H3) that the asymptotic dynamics of the cell 3 system of differ-

ential equations reduces to the periodically forced system

ẋ3 = f(x3, x
λ
2(t), λ) (2.3)

Since the system ẋ3 = f(x3, 0, λ), which is identical to (2.2), is operating near a Hopf
bifurcation with frequency ωH and the periodic forcing itself has frequency near ωH ;
it follows that (2.3) is being forced at near resonance. Therefore, it is not surprising
that the amplitude of cell 3 is greater than that of cell 2. It is not transparent,
however, that cell 3 will undergo stable periodic oscillation and that the growth of
the amplitude of that periodic solution will be λ

1

6 . These facts are proved in [12, 8].

Remark 2.1 It is natural to ask what happens at synchrony-breaking Hopf bifurca-
tion if extra cells are added to the feed-forward chain. The answer is simple: periodic
solutions are found whose cell j amplitude grows at a rate that is the cube root of
the growth in the amplitude of cell j − 1; that is, the amplitude of cell 4 grows at the
rate λ

1

18 , etc.

Remark 2.2 It was shown in [12] that the periodic solution in (1.1) that we have just
described can itself undergo a secondary Hopf bifurcation to a quasiperiodic solution
(see Figure 3). This observation leads naturally to questions of frequency locking and
Arnold tongues, which are discussed in Broer and Vegter [4].

3 Periodic Forcing of Feed-Forward Chains

An important characteristic of a network motif is that it performs some function [1].
Numerical simulations and experiments [26] with identical coupled circuits support
the notion that the feed-forward chain can act as an efficient filter-amplifier, and hence
be a motif. However, the general theoretical results that support this assertion have
been proved only under restrictive assumptions. It this section we present numerical
and experimental evidence in favor of the feed-forward chain being a motif.

We assume that the feed-forward chain in Figure 1 is modified so that a small
amplitude ε periodic forcing of frequency ωf is added to the coupling in the first
cell. See Figure 4. We assume further that there is a bifurcation parameter λ for the
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Figure 3: ([12, Figure 13]) Quasiperiodic solution near a secondary bifurcation from
a periodic solution obtained by synchrony-breaking Hopf bifurcation in (1.1).

internal cell dynamics that is tuned near a point of Hopf bifurcation. The question
we address is: What are the amplitudes of the responses in cells 2 and 3 as a function
of the forcing frequency ωf? Due to resonance that response should be large when
the forcing frequency is near the Hopf frequency and small otherwise.

1 2 3
εg(ωft)

Figure 4: The feed-forward chain.

3.1 Simulations

The general form of the differential equations for the periodically forced feed-forward
chain is

ẋ1 = f(x1, x1 + εg(ωft), λ)
ẋ2 = f(x2, x1, λ)
ẋ3 = f(x3, x2, λ)

(3.1)

where xj ∈ Rk is the phase variable of cell j, g : R → Rk is a 2π periodic forcing
function, and λ is a bifurcation parameter.

To proceed with the simulations we need to specify f and g. Specifically, we
assume that the internal cell dynamics satisfy:
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(B1) the internal cell phase space is two-dimensional and identified with C,

(B2) the internal cell dynamics is in truncated normal form for Hopf bifurcation,

(B3) the Hopf bifurcation is supercritical so that the origin is stable for λ < 0,

(B4) the cubic term in this normal form is real, and

(B5) the coupling is linear.

In addition, we normalize the cubic term to be −1 and simplify the coupling to be
−y; that is, we assume

f(z, y, λ) = (λ + ωHi − |z|2)z − y (3.2)

where z, y ∈ C. We assume that λ < 0 is small so that the internal dynamics is tuned
near the point of Hopf bifurcation.

We will perform simulations with two types of forcing: simple harmonic and
spiking. See Figure 5. In simple harmonic forcing g(t) = eit. In spike forcing g is
obtained numerically as a solution to the Fitzhugh–Nagumo equations

v̇ = 6.4 − 120m3h(v − 115) − 36n4(v + 12) − 0.3(v − 10.5989),
ṅ = αn(1 − n) − βnn,

(3.3)

where

h = 0.8 − n m = αm/(αm + βm) αm = 0.1(25 − v)e1−(25−v)/10

βm = 4e−v/18 αn = 0.01(10 − v)e1−(10−v)/10 βn = 0.125e−v/80.

To obtain g(t) we normalize (v(t), n(t)) so that it has mean zero and diameter 2. The
first coordinate of the time series for the spiking forcing is shown in Figure 5 (right).
This time series is compared to simple harmonic forcing in Figure 5 (left).

Recall that for sufficiently small ε, periodic forcing of amplitude ε, of a system of
ODEs near a stable equilibrium, always produces an order ε periodic response. The
frequency of the response equals that of the forcing. Hence, (H1) implies that the
periodic output x1(t) from cell 1 will be of order ε with frequency ωf .

The periodic output x1(t) is fed into cell 2. Although λ < 0 implies that the origin
in the cell 2 equation is stable, the fact that λ is near a bifurcation point implies that
the rate of attraction of that equilibrium will be small. Thus, only if ε is very small
will the periodic output of cell 2 be of order ε.
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Figure 5: First coordinate of time series of 2π-periodic forcings. (Left) Simple har-
monic forcing cos t. (Right) Spike forcing obtained from the Fitzhugh–Nagumo equa-
tions (3.3).

Because of resonance, we expect that the amplitude of x2(t) will be large when ωf

is near ωH . Indeed, Kern and Stoop [23] observe that when the differential equation

f is (3.2) with ε > |λ| 32 , then the growth of the periodic output will be of order ε
1

3 .
We revisit this point in Section 4 when we discuss some of the theory behind the
amplification. Moreover, we can expect the amplitude of x3(t) to be even larger in

this range; that is, we can expect the amplitude of cell 3 to grow at the rate ε
1

9 .
To illustrate these statements we perform the following simulation. Fix ε > 0

and λ < 0, and plot the amplitudes of the periodic states in cells 1, 2 and 3 as a
function of the forcing frequency ωf . The results are given in Figure 6. Note that
the input forcing is amplified when ωf ≈ ωH and that the qualitative results do not
depend particularly on the form of g. In particular, note that the response curves are
symmetric in ωf = ωH .

In Figure 7 we show the amplitudes of the responses in the three cells as a function
of ε, for both harmonic and spiking forcing. In both cases we see a similar pattern
of growth rate of amplitude. The amplitude in the first cell grows linearly with ε.
In the second cell, as ε increases, the growth rate tends towards ‘cube root’, that is
r ∼ ε1/3. Similarly in the third cell, for large enough ε, we see r ∼ ε1/9. As ε increases
from zero, there is a transition region into these regimes. This appears to occur for
different values of ε for the different types of forcing. However, since it is not clear
how one should define the ‘amplitude’ of the spiking forcing, and we have arbitrarily
chosen to set the diameters of the two forcings equal, this is not unexpected. We
investigate the transition region for harmonic forcing more fully in section 4.
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Figure 6: Amplitudes of cells 1 (dotted curve), 2 (dashed curve) and 3 (solid curve)
as a function of forcing frequency; λ = −0.01, ε = 0.03, ωH = 1, 0.7 ≤ ωf ≤ 1.3.
(Left) simple harmonic forcing; (right) spike forcing.

3.2 Experiments

McCullen et al. [26] performed experiments on a feed-forward chain of coupled non-
linear modified van der Pol autonomous oscillators. Even though the McCullen ex-
periments were performed with a system that was not in normal form, the results
conform well with the simulations. The responses to a simple harmonic forcing with
varying frequency are shown in Figure 8. Note the similarity with the simulation
results in Figure 6. The plot on the right of Figure 8 shows the expected cube root
scaling in the amplitude of cell 3 as a function of the amplitude cell 2.

Recall that a band-pass filter allows signals in a certain range of frequencies to pass,
whereas signals with frequencies outside this range are attenuated. As we have seen,
the feed-forward chain can act as a kind of band-pass filter by exciting small amplitude
signals to an amplitude larger than some threshold only if the input frequency is near
enough to the Hopf frequency. To determine the frequency of an incoming sound, the
human auditory system should have the capability of acting like a band-pass filter.
As noted, several authors have suggested that the structure of outer hair cells on the
basilar membrane is tuned to be a linear array of coupled cells each tuned near a
Hopf bifurcation point but at different frequencies. See Section 5.
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(a) Harmonic forcing
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(b) Spiking forcing

Figure 7: Log-log plot of amplitudes of response in cells 1 (◦), 2 (×) and 3 (+), as a
function of ε, for harmonic forcing and spiking forcing. Also shown are lines of slope
1, 1/3 and 1/9 (from bottom to top). Parameters are ωf = ωH = 1, λ = −0.01, (a)
0.0005 < ε < 0.36, (b) 0.0025 < ε < 0.9.

4 Periodic forcing near Hopf bifurcation

In Section 3 we discussed numerical simulations and experiments which suggest that
the amplification results for forced feed-forward chains near normal form Hopf bifur-
cation with sinusoidal forcing appear to hold even when the forcing is not sinusoidal
or the system is not in normal form. These observations motivate the need for a
general theory of periodic forcing of systems near Hopf bifurcation. In this section
we make a transition from studying feed-forward chains to the simpler situation of
periodic forcing of systems near Hopf bifurcation.

In particular we show that when the cubic term in Hopf bifurcation has a suffi-
ciently large complex part, then multiple periodic solutions will occur as ωf is varied
near ωH . The importance of the complex part of the cubic term in different aspects of
forced Hopf bifurcation systems was noted previously by Wang and Young [33]. The
existence of regions of multiplicity motivates the need for a general theory of periodic
forcing of systems near Hopf bifurcation. A detailed study of these forced systems,
based on equivariant singularity theory, is being developed in [34].
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Figure 8: (Left) [26, Fig. 2]. Cell 2 and 3 amplitudes as a function of forcing
frequency in oscillator experiment. (Right) [26, Fig. 5]. Log-log plot of amplitudes of
oscillations in cells 2 and 3 as a function of forcing frequency near Hopf bifurcation
point.

4.1 Simulations

As in Section 3 we assume that the system we are forcing is in truncated normal form.
More precisely, we assume that this system satisfies (B1-B3), but we do not assume
that the cubic term is real. We also assume that the forcing is additive and arrive at
the equation

ż = (λ + iωH)z + c|z|2z + εeiωf t, (4.4)

where λ < 0 and ε > 0 are small, c = cR + icI and cR < 0. We can rescale z to set
cR = −1. The scaled equation has the form

ż = (λ + iωH)z + (−1 + iγ)|z|2z + εeiωf t, (4.5)

where γ = cR/cI .
We show the results of simulation of (4.5) when γ = 0 (the case that is most

often analyzed in the literature) and when γ = 10. Both simulations show amplifi-
cation of the forcing when ωf ≈ ωH = 1. However, when γ 6= 0, we find that there
can be bistability of periodic solutions. Figure 9 (right) shows results of two set of
simulations, with different initial conditions. For a range of ωf , there are two stable
solutions with different amplitude r = |z|.
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Figure 9: Amplitudes of solutions as function of Hopf frequency of equation (4.5),
with ωH = 1, λ = −0.0218, ε = 0.02. (Left) γ = 0. (Right) γ = −11; The ◦’s and
×’s indicate two separate sets of simulations with different initial conditions. For
0.35 < ωf < 0.7, there are two stable solutions.

4.2 Asymmetry and multiplicity in response curve

It is well-known that the normal form for Hopf bifurcation has phase shift symmetry
and hence that the normal form equations can be solved in rotating coordinates. The
same is true for the forced system. Write (4.5) in rotating coordinates z = uei(ωf t−θ),
where θ is an arbitrary phase shift, to obtain

u̇ = (λ + iω)u + (−1 + iγ)|u|2u − εeiθ

where ω = ωH − ωf . Note that stationary solutions in u, for any θ, correspond to
periodic solutions z(t) with frequency ωf . We set u̇ = 0 and solve

g(u) ≡ (λ + iω)u + (−1 + iγ)|u|2u = εeiθ (4.6)

for any u and θ. Note that finding a solution to (4.6) for some θ is equivalent to
finding u such that

|g(u)|2 = ε2. (4.7)

Note also that

|g(u)|2 = (λ2 + ω2)|u|2 + 2(ωγ − λ)|u|4 + (1 + γ2)|u|6.

That is, |g(u)|2 depends only on |u|2.
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Set δ = ε2 and R = |u|2. We can write (4.7) as

G(R; λ, ω, γ, δ) ≡ (1 + γ2)R3 + 2(ωγ − λ)R2 + (λ2 + ω2)R − δ = 0. (4.8)

Since G(R; λ, ω, γ, δ) is invariant under the parameter symmetry (ω, γ) → (−ω,−γ),
we can assume γ ≥ 0. Additionally, if γ = 0, then G(R; λ, ω, γ, δ) is invariant under
the parameter symmetry ω → −ω.

Fix λ < 0, δ > 0 and γ ≥ 0. We seek to answer the following question. Determine
the bifurcation diagram consisting of solutions R > 0 to (4.8) as ω varies. Note
that variation of ω corresponds to variation of either ωf or ωH in the original forced
equation (4.4). In Figure 10 we plot sample bifurcation diagrams of (4.8) for three
values of γ. We see that as γ is increased, asymmetry occurs in the bifurcation
diagram, ultimately leading to multiple solutions.
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Figure 10: Bifurcation diagrams of solutions to (4.8) for varying γ. As γ is increased,
the response curve becomes asymmetric, and as it is increased further, for some values
of ω there are multiple solutions. Parameters used are δ = 0.01, λ = −0.109.

We use bifurcation theory, in particular hysteresis points, to prove that multiplicity
occurs for arbitrarily small λ < 0 and δ > 0. Hysteresis points correspond to points
where the bifurcation diagram has a vertical cubic order tangent and such points are
defined by

G = GR = GRR = 0 and Gω 6= 0 6= GRRR

See [13, Proposition 9.1, p. 94]. Multiplicity of solutions occurs if variation of γ leads
to a universal unfolding of the hysteresis point. It is shown in [13, Proposition 4.3,
p. 136] that γ is a universal unfolding parameter if and only if

det

(

Gω GωR

Gγ GγR

)

6= 0. (4.9)
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In this application of singularity theory we will need the following:

G = (1 + γ2)R3 + 2(ωγ − λ)R2 + (λ2 + ω2)R − δ = 0, (4.10)

GR = 3(1 + γ2)R2 + 4(ωγ − λ)R + (λ2 + ω2) = 0, (4.11)

GRR = 6(1 + γ2)R + 4(ωγ − λ) = 0, (4.12)

GRRR = 6(1 + γ2) > 0, (4.13)

Gω = 2R(γR + ω) 6= 0, (4.14)

and

GωR = 2(2γR + ω), (4.15)

Gγ = 2R2(γR + ω), (4.16)

GγR = 2R(3γR + 2ω). (4.17)

Note that the determinant in (4.9) is just G2
ω, which is nonzero at any hysteresis

point. Hence, variation of γ will always lead to a universal unfolding of a hysteresis
point and to multiple solutions for fixed ω.

Theorem 4.1 For every small λ < 0 and δ > 0 there exists a unique hysteresis point

of G at R = Rc(δ, λ), ω = ωc(δ, λ), γ = γc(δ, λ). Moreover,

ωc(δ, 0) = −
√

3(2δ)
1

3 γc(δ, 0) =
√

3 Rc(δ, 0) =

(

δ

4

)
1

3

. (4.18)

Proof: We assert that (4.10)-(4.12) define Rc, ωc, γc uniquely in terms of δ and λ.
Specifically, we show that

Rc(δ, λ) =

(

δ

1 + γ2
c

)
1

3

> 0. (4.19)

γc(δ, λ) =
λ +

√
3ωc

ωc −
√

3λ
. (4.20)

Moreover, let
p(ω) = ω3 −

√
3λω2 + λ2ω −

√
3λ3. (4.21)

Then ωc(δ, λ) is the unique solution to the equation

p(ωc) = −6
√

3δ. (4.22)
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We can compute these quantities explicitly when λ = 0. Specifically, (4.22) reduces
ω3

c = −6
√

3δ. It is now straightforward to verify (4.18).
To verify (4.19) combine (4.11) and (4.12) to yield

R = −2(ωγ − λ)

3(1 + γ2)
and R2 =

λ2 + ω2

3(1 + γ2)
. (4.23)

More precisely, the first equation is obtained by solving GRR = 0 and the second by
solving RGRR−GR = 0. Multiplying the first equation in (4.23) by R and substituting
for R2 in the second equation yields

2(ωγ − λ)R = −(λ2 + ω2). (4.24)

Substituting (4.24) into (4.10) yields

R3 =
δ

1 + γ2
(4.25)

thus verifying (4.19).
We eliminate R from (4.23) in two ways, obtaining

− 8(ωγ − λ)3

27(1 + γ2)2
= δ and

4(ωγ − λ)2

3(1 + γ2)
= λ2 + ω2 (4.26)

To verify the first equation in (4.26), cube the first equation in (4.23) and use (4.25)
to substitute for R3. To verify the second equation, square the first equation in (4.23)
and use the second equation in (4.23) to substitute for R2.

Next we derive (4.20). Rewrite the second equation in (4.26) to obtain

ω2(γ2 − 3) − 8ωγλ + λ2(1 − 3γ2) = 0, (4.27)

which can be factored as
(

γ(ω −
√

3λ) − (λ +
√

3ω)
)(

γ(ω +
√

3λ) − (λ −
√

3ω)
)

= 0. (4.28)

Thus, potentially, there are two solutions for γc; namely,

γ =
λ +

√
3σω

ω − σ
√

3λ
, (4.29)

where σ = ±1, depending on which bracket is chosen in (4.28).
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Next use (4.28) to show that

ωγ − λ =
√

3
λ2 + ω2

σω −
√

3λ
. (4.30)

Squaring the second equation in (4.26) and substituting the first yields

(λ2 + ω2)2 = 6(ωγ − λ)
8(ωγ − λ)3

27(1 + γ2)2
= −6δ(ωγ − λ) (4.31)

Next use (4.30) to eliminate ωγ − λ. A short calculation leads to

(ω2 + λ2)(σω −
√

3λ) = −6
√

3δ. (4.32)

Since δ > 0, we must have σω −
√

3λ < 0, or σω <
√

3λ < 0.
We claim that for γ ≥ 0, we must choose σ = +1. Since λ < 0 and σω < 0,

the numerator of (4.29) is negative. If σ = −1, then the denominator of (4.29) is
σ(σω −

√
3λ) > 0, since σω −

√
3λ < 0. Hence γ < 0. We thus write σ = +1 and

verify (4.20).
We claim that given δ and λ there is a unique solution ω to (4.32). Observe that

the cubic polynomial in ω on the left side of (4.32) is (4.21). Since

p′(ω) = (
√

3ω − λ)2, (4.33)

p(ω) is monotonic; and there is a unique solution ωc, as claimed.
Finally, we must show that Gω is nonzero at Rc, ωc, γc. We do this by showing

that
γc(δ, λ)Rc(δ, λ) + ωc(δ, λ) < 0.

By cubing the first equation in (4.26) and dividing by the square of the second equa-
tion, we can eliminate the ωγ − λ factor and show that

1 + γ2
c =

(λ2 + ω2
c )

3

27δ2
.

Using this alongside (4.25) we write Rc as

Rc =
δ1/3

(1 + γ2
c )

1/3
= δ1/3 3δ2/3

λ2 + ω2
c

=
3δ

λ2 + ω2
c

.

Then use (4.29) to substitute for γc to find

Rcγc =
3δ

λ2 + ω2
c

λ +
√

3ωc

ωc −
√

3λ
= −λ +

√
3ωc

2
√

3
,
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where we have used (4.32) to simplify the denominator. Therefore

Rcγc + ωc =

√
3ωc − λ

2
√

3
=

1

2

(

ωc −
1√
3
λ

)

<
1

2

(

ωc −
√

3λ
)

< 0,

where the penultimate inequality follows because 1√
3
λ >

√
3λ.

4.3 Scalings of solution amplitudes

Kern and Stoop [23] and Eguĺıuz et. al [7] consider the system (4.5) with γ = 0, and
observe that there are regions of parameter space in which the input signal (forcing)
is amplified - that is, the solution z(t) = rei(ωt+θ) has an amplitude r which scales
like ε1/3.

Specifically, Eguĺıuz et. al [7] specialize (4.5) exactly at the bifurcation point
(λ = 0) and show that the solution has an amplitude r ∼ ε1/3 when ωH = ωf . Away
from resonance, (ωH 6= ωf), they show that for ε small enough (small enough forcing),
the response r ∼ ε/|ωH − ωf |. Kern and Stoop [23] consider forcing exactly at the
Hopf frequency (i.e. ωH = ωf), and show that the solution has an amplitude r ∼ ε1/3

when λ = 0, and when λ < 0 the amplitude r ∼ ε/|λ|.
In the following, we make precise the meaning of ‘cube-root growth’, and addi-

tionally, do not assume γ = 0. We show that, in some parameter regime, the response
r can be bounded between two curves, specifically, that

(

ε√
2

)
1

3

< r < ε
1

3 ,

that is, r lies between two lines in log-log plots. In Figure 11 we show the result of
numerical simulations of (4.5) as ε is varied along with the two lines given above. For
large enough ε, the response amplitude lies between these lines. Compare also with
Figure 7 — we could perform a similar process here of bounding the amplitudes of
response to determine regions of different growth rates.

The width of this region is in some sense arbitrary — choosing a different lower
boundary would merely result in different constants in the proof of the lemmas given
below. We consider here only the scaling of the amplitude of the maximum response
(as a function of ω), but note that our calculations can easily be extended beyond
this regime.
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Figure 11: For ‘cube root growth’, the amplitude r is bounded by two straight lines
in a plot of log r versus log ε.

For consistency with the previous section, we work with R = r2 and δ = ε2; it is
clear that similar relations will hold between R and δ. Recall

G(R; λ, ω, γ, δ) = (1 + γ2)R3 + 2(ωγ − λ)R2 + (λ2 + ω2)R − δ,

where ω = ωH − ωf . The amplitude of solutions is given by G(R; λ, ω, γ, δ) = 0.
Consider the amplitude as ω is varied, then the maximum response R occurs when
Gω = 0, that is, at ω = −γR, which is non-zero for γ 6= 0. At γ = 0, the response
curve is symmetric in ω, and so the maximum must occur at ω = 0.

Write
G(R; λ, ω, γ, δ) = Γ(R; λ, ω, γ)− δ, (4.34)

so the amplitude squared of the response, R, is related to the amplitude squared of
the forcing, δ, by

Γ(R; λ, ω, γ) = δ.

Consider the function Γ(R; λ, ω, γ) evaluated at the value of ω for which the max-
imum response occurs, that is, compute

Γ(R; λ,−γR, γ) = R3 − 2λR2 + λ2R,

which turns out to be independent of γ, and so write G (R; λ) ≡ Γ(R; λ,−γR, γ).
Moreover, since λ < 0, G (R; λ) is monotonically increasing in R and hence invertible.
Therefore, the response curve has a unique maxima for all γ.
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Write H(δ; λ) ≡ G (R; λ)−1. Then for given δ, λ, the maximum R satisfies R =
H(δ; λ).

Observe that for |R| small, G (R; λ) ≈ λ2R, and for |R| large, G (R; λ) ≈ R3.
Therefore, for |δ| small we expect R = H(δ; λ) ≈ δ/λ2, and for |δ| large, R =
H(δ; λ) ≈ δ1/3. We make these statements precise in the following lemmas.

Lemma 4.2 If |λ| < 0.33 δ1/3, then

(

δ

2

)1/3

< H(δ; λ) < δ1/3.

Remark 4.3 The constant 0.33 in the statement of Lemma 4.2 can be replaced by
k1, the unique positive root of y2 + 22/3y − 2−2/3 = 0. The hypothesis in this lemma
can then read |λ| < k1δ

1/3. In the proof we use k1 rather than 0.33.

Proof: Since G (R; λ) is monotonic increasing, we need to show that

G
(

(

δ

2

)1/3

; λ

)

< δ < G
(

δ1/3; λ
)

.

Since λ < 0 and δ > 0 the second inequality follows from

G
(

δ1/3; λ
)

= δ − 2λδ2/3 + λ2δ1/3 > δ.

For the first inequality, we have

G
(

(

δ

2

)1/3

; λ

)

=
δ

2
− 21/3λδ2/3 + λ2 δ1/3

21/3
.

We have assumed −λ < k1δ
1/3; so

G
((

δ

2

)

; λ

)

<
δ

2
+ 21/3k1δ + k2

1

δ

21/3
=

1

21/3

(

1

22/3
+ 22/3k1 + k2

1

)

δ = δ,

since k2
1 + 22/3k1 = 2−2/3.

Lemma 4.4 If |λ| > 1.06 δ1/3, then

δ

2λ2
< H(δ; λ) <

δ

λ2
.
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Remark 4.5 The constant 1.06 in the statement of Lemma 4.4 can be replaced by
k2, where y = k3

2 is the unique positive root of 4y2 − 4y − 1 = 0. The hypothesis in
this lemma can then read |λ| > k2δ

1/3. In the proof we use k2 rather than 1.06.

Proof: Since G (R; λ) is monotonic increasing in R, we have to show that

G
(

δ

2λ2
; λ

)

< δ < G
(

δ

λ2
; λ

)

.

Since λ < 0 and δ > 0 the second inequality follows from

G
(

δ

λ2
; λ

)

=
δ3

λ6
− 2

δ2

λ3
+ δ > δ.

For the first inequality, we have

G
(

δ

2λ2
; λ

)

=
δ3

8λ6
− δ2

2λ3
+

δ

2
.

We assumed λ6 > k6
2δ

2 and −λ3 > k3
2δ. So

G
(

δ

2λ2
; λ

)

<
δ3

8k6
2δ

2
+

δ2

2k3
2δ

+
δ

2
=

1

8k6
2

(4k6
2 + 4k3

2 + 1)δ = δ,

since 4k3
2 + 1 = 4k6

2.

Remark 4.6 Note that k1 ≈ 0.33 and k2 ≈ 1.06, so k1 < k2. It follows that the
region of linear amplitude (ε) growth is very small, whereas the region of cube root
growth is quite large. In Figure 12 we illustrate this point by graphing the curves
that separate the regions; namely ε = (λ/k1)

3/2 (dashed curve for cube root growth)
and ε = (λ/k2)

3/2 (continuous curve for linear growth). Since 1
k2

< 1
k1

the linear and
cube root growth regions are disjoint.

Remark 4.7 The maximum amplitude r satisfies G (r2; λ) = ε2, where G (R; λ) is an
increasing function of R. Hence r increases as ε increases. Recall that the maximum r
occurs at ω = −γr2. Hence with fixed parameters λ < 0, γ 6= 0, the forcing frequency
for which the maximum amplitude occurs, varies as the amplitude of the forcing (ε)
increases.

Remark 4.8 It is simple to extend this type of reasoning into regions away from
the maximum amplitude of response, to find linear growth rates for ω far from the
maximum response. However, the algebra is rather messy and so we do not include
the details here.
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Figure 12: Regions of linear and cube root growth in the λ-ε plane.

4.4 Q-factor

Engineers use the Q-factor to measure the efficiency of a band-pass filter. The Q-
factor is nondimensional and defined by

Q =
ωmax

dω
,

where ωmax is the forcing frequency at which maximum response amplitude rmax

occurs, and dω is the width of the amplitude response curve when it has half the
maximum height. In Figure 13 we give a schematic of a response curve and show how
Q is calculated.

The larger the Q, the better the filter. Quantitatively, there is a curious obser-
vation. It can be shown that for our Hopf normal form, Q varies linearly with ωH .
The response curve in ω-r space is defined implicitly by equation (4.8) (recall R = r2,
δ = ε2). This curve depends only on ω (not on ωf or ωH independently). Therefore,
as ωH varies, the curve will be translated, but its shape will not change. Hence the
width of the curve, dω, is independent of ωH .

As shown in Section 4.3, the maximum response rmax is independent of ωH . The
position of the maximum response is given by ω = −γr2

max, or ωf = ωH + γr2
max.

Hence

Q =
ωH + γr2

max

dω

and so depends linearly on ωH .
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Figure 13: Schematic of a response curve as ωf is varied, for fixed ωH . The Q factor
is ωmax/dω.

In addition, we find from simulations that for any given ωH the Q-factor of the
system is better for spiking forcing than for sinusoidal forcing. Figure 14 shows results
of simulations of the three cell feedforward network from section 3.1 using sinusoidal
and spiking forcing. From these figures, we see two, perhaps surprising, results. First,
that the Q-factor for spiking forcing is almost 5 times higher than that of sinusoidal
forcing. Second, that for both forcings, the Q-factor for cell 3 is less than that of cell
2.

We explain the first observation by the following analogy. Consider the limit of
very narrow spiking forcing, on a damped harmonic oscillator, for example, pushing
a swing. Resonant amplification can only be achieved if the frequency of the forcing
and the oscillations exactly match. If they are slightly off, then the forcing occurs at
a time when the swing is not in the correct position and so only a small amplitude
solution can occur.

We further note that although the output from a cell receiving spiking forcing is
not sinusoidal, it is closer to sinusoidal than the input. That is, as the signal proceeds
along the feedforward chain, at each cell the output is closer to sinusoidal than the
last. Combining this observation with the first explains why the Q-factor of cell 3
should be less than that for cell 2.

5 Cochlear modeling

The cochlea in the inner ear is a fluid filled tube divided lengthwise into three cham-
bers. The basilar membrane (BM) divides two of these chambers and is central to
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Figure 14: The figures show the Q factor as ωH is varied for sinusoidal forcing (left)
and spiking forcing (right) for each cell in the feedforward network from Section 3.1.
In these simulations λ = −0.01 and ε = 0.08.

auditory perception. Auditory receptor cells, or hair cells, sit on the BM. Hair bundles
(cilia) protrude from these cells, and some of the cilia are embedded in the tectorial
membrane in the middle chamber. For reviews of the mechanics of the auditory
system, see [2, 17, 29].

When a sound wave enters the cochlea, a pressure wave in the fluid perturbs
the BM near its base. This initiates a wave along the BM, with varying amplitude,
that propagates towards the apex of the cochlea. The envelope of this wave has a
maximum amplitude, the position of which depends on the frequency of the input.
High frequencies lead to maximum vibrations at the stiffer base of the BM, and low
frequencies lead to maximum vibrations at the floppier apex of the BM. As discussed
in [22], each point along the BM oscillates at the input frequency. As the sound wave
bends the BM, the hair cells convert the mechanical energy into neuronal signals.
There is evidence [6, 23, 25] that the oscillations of the hair cells have a natural
frequency which varies with the position of the hair cell along the BM.

Experiments have shown that the ear has a sharp frequency tuning mechanism
along with a nonlinear amplification system — there is no audible sound soft enough
to suggest that the cochlear response is linear. Many authors [5, 6, 7, 21, 23, 27, 28]
have suggested that these two phenomena indicate that the auditory system may
be tuned near a Hopf bifurcation. Detailed models of parts of the auditory system
(Hudspeth and Lewis [18, 19], Choe, Magnasco and Hudspeth [6]) have been shown
to contain Hopf bifurcations for biologically realistic parameter values.
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5.1 Hopf models of the auditory system

Most simplified models model a single hair cell as a forced Hopf oscillator, similar
to (4.5), but with the imaginary part of the cubic term (γ) set equal to zero. As we
have shown in Section 4, this assumption leads to non-generic behavior, in particular,
that the response curve is symmetric in ω. In fact, a center manifold reduction of the
model of Hudspeth and Lewis [18, 19] by Montgomery et. al [27] finds that γ 6= 0.
Specifically, they find γ = −1.07.

Furthermore, the response curve in the auditory system has been shown exper-
imentally (see [29] and references within) to be asymmetric. Two papers [23, 25]
have considered the dynamics of an array of Hopf oscillators (rather than the single
oscillators studied by most other authors). They achieve the aforementioned asym-
metry through couplings between the oscillators via a traveling wave which supplies
the forcing terms. This complicates the matter significantly, so that analytical results
cannot be obtained.

However, we note that merely having a complex, rather than real, cubic term in
the Hopf oscillator model would have a similar effect. The value of γ found by Mont-
gomery et. al [27] is in the regime where we observe asymmetry, but not multiplicity
of solutions. Multiple solutions in this model could correspond to perception of a
sound of either low or high amplitude for the same input forcing. We have seen no
mention of this phenomena in the literature.

5.2 Two-frequency forcing

It is clear that stimuli received by the auditory system are not single frequency, but
contain multiple frequencies. If each hair cell is to be modelled as a Hopf oscillator, we
are interested in the effect of multi-frequency forcing on an array of Hopf oscillators.
We give here some numerical results from an array of N uncoupled Hopf oscillators:

żj = (λ + iωH(j))z + (−1 + iγ)|zj |2zj + εg(t), j = 1, . . . , N, (5.1)

where ωH(j) = ω1 + j∆ω, for some ω1, ∆ω, that is, the Hopf frequency increases
linearly along the array of oscillators. Note that all oscillators receive the same
forcing.

Consider forcing which contains two frequency components, for instance:

g(t) = eit + e
√

5it. (5.2)
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In Figure 15 we plot the mean amplitude of the responses of each oscillator in the
array. The response clearly has two peaks, one close to each frequency component of
the input.
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Figure 15: The figure shows the mean amplitude for each of an array of forced Hopf
oscillators (equation (5.1)), with forcing given in (5.2). The phase plane portraits for
the outputs of the oscillators with ωH = 1 and ωH = 1.6 are shown in Figure 16.
Remaining parameters are λ = −0.01, ε = 0.05, γ = −1.

Note also that the forcing g(t) is quasiperiodic. In those oscillators which have
a Hopf frequency close to one component of the forcing, only that component is
amplified. This results in an output which is close to periodic. In Figure 16 we show
the resulting phase plane solutions from two of the Hopf oscillators. The first has
ωH = 1, so the first component of the forcing is amplified, and the solution is close to
periodic. The second has ωH = 1.6, which is far from both 1 and

√
5. Hence neither

component is amplified and the output is quasiperiodic.
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Figure 16: The phase plane portraits for Hopf oscillators with ωH = 1 (left) and
ωH = 1.6 (right), with forcing as given in (5.2). The left figure is almost periodic, but
the right is clearly quasiperiodic. Remaining parameters are λ = −0.01, ε = 0.05,
γ = −1.
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[7] V.M. Egúıluz, M. Ospeck, Y. Choe, A.J. Hudspeth, and M.O. Magnasco. Essential nonlinear-
ities in hearing. Phys. Rev. Lett., 84 (2000) 5232–5235.

[8] T. Elmhirst and M. Golubitsky. Nilpotent Hopf bifurcations in coupled cell systems. J. Appl.

Dynam. Sys. 5 (2006) 205–251.

28



[9] C. D. Geisler and C. Sang. A cochlear model using feed-forward outer-hair-cell forces. Hearing

Research 86 (1995) 132–146.

[10] D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations, fourth ed. Oxford
University Press, Oxford, 2007.

[11] M. Golubitsky and R. Lauterbach. Bifurcations from Synchrony in Homogeneous Networks:
Linear Theory. SIAM J. Appl. Dynam. Sys. To appear.

[12] M. Golubitsky, M. Nicol, and I. Stewart. Some curious phenomena in coupled cell networks.
J. Nonlinear Sci. 14 (2) (2004) 207–236.

[13] M. Golubitsky and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory: Vol. I.

Applied Mathematical Sciences 51, Springer-Verlag, New York, 1984.

[14] M. Golubitsky and I. Stewart. The Symmetry Perspective: From Equilibrium to Chaos in Phase

Space and Physical Space. Birkhäuser, 2002.
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