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Abstract We study the spike statistics of an adaptive expo-
nential integrate-and-fire neuron stimulated by white Gaus-
sian current noise. We derive analytical approximations for
the coefficient of variation and the serial correlation coeffi-
cient of the interspike interval (ISI) assuming that the neu-
ron operates in the mean-driven tonic firing regime and that
the stochastic input is weak. Our result for the serial corre-
lation coefficient has the form of a geometric sequence and
is confirmed by the comparison to numerical simulations.
The theory predicts various patterns of interval correlations
(positive or negative at lag one, monotonically decreasing
or oscillating) depending on the strength of the spike-
triggered and subthreshold components of the adaptation
current. In particular, for pure subthreshold adaptation we
find strong positive ISI correlations that are usually ascribed
to positive correlations in the input current. Our results
i) provide an alternative explanation for interspike-interval
correlations observed in vivo, ii) may be useful in fitting
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point neuron models to experimental data, and iii) may be
instrumental in exploring the role of adaptation currents
for signal detection and signal transmission in single neurons.
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1 Introduction

Neurons transmit and process information by sequences
of action potentials (spikes) (Bear et al. 2007; Dayan and
Abbott 2001). Spike generation appears often to be well
described in a stochastic framework because the neural fir-
ing is affected by intrinsic noise source, as, for instance,
channel noise (White et al. 2000) and by the massive synap-
tic input from many other (only weakly correlated) neurons
(Destexhe et al. 2003). An important task of computational
neuroscience is to identify the way that information about
stimuli is encoded in the neural spike train (Rieke et al.
1996). A nontrivial step on this way is to understand the
firing statistics first, i.e. to study which spike patterns are
possible in the absence or presence of a sensory stimuli and
which patterns can be expected due to the aforementioned
intrinsic noise or the synaptic background.

One key feature of the firing statistics are correlations
among the interspike intervals (ISI) of the spike train.
Experimental evidence shows that ISIs are typically corre-
lated over a few lags (Lowen and Teich 1992; Nawrot et al.
2007; Neiman and Russell 2001; Ratnam and Nelson 2000;
Engel et al. 2008), and these correlations can have a strong
effect on the neural information transmission (Ratnam and
Nelson 2000; Chacron et al. 2001; Chacron et al. 2004;
Avila-Akerberg and Chacron 2011). A number of mech-
anisms are known for inducing ISI correlations, such as
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correlated stimuli (so-called colored noise) (Middleton et al.
2003; Lindner 2004), or intrinsic noise from ion channels
with slow kinetics (Fisch et al. 2012). Another prevalent
mechanism for ISI correlations are the slow feedback pro-
cesses mediating spike-frequency adaptation (Treves 1993;
Chacron et al. 2000; Liu andWang 2001; Benda et al. 2005),
a phenomenon describing the reduced neuronal response
to slowly changing stimuli (Benda and Herz 2003; Gab-
biani and Krapp 2006). More specifically, the negative
feedback from both subthreshold and spike-triggered adap-
tations impact the timing of neuronal spiking (Benda and
Herz 2003; Benda et al. 2010; Gabbiani and Krapp 2006;
Ladenbauer et al. 2012; Schwalger and Lindner 2013).
The correlations of adapting neurons can show qualitatively
different patterns, ranging from monotonically decaying
to damped oscillatory correlations (Chacron et al. 2004;
Chacron et al. 2001; Ratnam and Nelson 2000; Schwalger
et al. 2010). Two of us have recently put forward a simple
theory for ISI correlations of integrate-and-fire (IF) neu-
rons with pure spike-triggered adaptation (Schwalger and
Lindner 2013) that allowed us to relate features of the neu-
ral dynamics to various correlation patterns. However, the
model in this study did not include subthreshold adaptation,
that is relevant for many adaptation currents. How sub-
threshold adaptation affects ISI correlations is still poorly
understood from the theoretical point of view and it is the
central question of our study.

In this article, we study the popular two-dimensional
adaptive exponential integrate-and-fire (aEIF) model, pro-
posed by Brette and Gerstner (2005) as a combination of
the exponential integrate-and-fire (EIF) model (Fourcaud-
Trocmé et al. 2003) and a second slow variable as in
Izhikevich’s model (Izhikevich 2003). Besides the often
studied form of spike-triggered adaptation, the system is
also equipped with a subthreshold coupling between adap-
tation variable and voltage, which endows the model with
much richer dynamical behavior and enables complex spik-
ing patterns as worked out in detail by Touboul and Brette
(2008) (it shares this rich repertoire of firing patterns with
the earlier model by Izhikevich (2003)). We consider a
stochastic version of the model that includes a white Gaus-
sian current noise, mimicking in a simple way the fluctua-
tions mentioned above. The advantages of the aEIF model
- as opposed to other two-dimensional models of similar
complexity - are the exponential spike initiation similar to
that seen in real action potentials and a direct relation of
its parameters to physiological ones. Moreover, the deter-
ministic aEIF model exhibits a wide range of firing patterns
(Clopath et al. 2007) that can be tuned to reproduce the
behavior of all major classes of neurons. Remarkably, it
has been successfully fit to Hodgkin-Huxley-type neurons
(Brette and Gerstner 2005) as well as to recordings from
cortical neurons (Jolivet et al. 2008).

We derive an analytical expression for the serial correla-
tion coefficient (SCC) and the coefficient of variation (CV)
in the mean-driven regime and under the assumption of
weak noise. This expression is based on the characteristics
of the deterministic aEIF model such as its phase response
curve (PRC) and its Green’s functions. We demonstrate
that this theory correctly predicts the correlation pattern
and coefficient of variation up to CVs of 0.2. Furthermore,
we show that a weak and slow subthreshold adaptation
has a weak effect on the correlation pattern. Most impor-
tantly, we show that strong pure subthreshold adaptation in
the aEIF model results in positive correlations, that decay
monotonically with the lag. This is in marked contrast
to the pronounced negative correlations between adjacent
ISIs, that have been so far regarded as the main effect of
adaptation currents in stochastic neuron models.

Our paper is organized as follows. In the methods section,
we introduce the model and statistics that are used in the
paper and discuss the dynamical behavior of the model
for strong mean input current. We then sketch the deriva-
tion of our main results. Theoretical predictions for the CV
and SCC are compared to simulations of the models at
different levels of noise and for the cases of pure subthresh-
old adaptation and spike-triggered adaptation, respectively.
Furthermore, we inspect how the interspike interval correla-
tions change upon varying the constant input current or the
adaptation time scale. We conclude by a discussion of our
findings in the biological context of neural signal transmis-
sion. Details of the deterministic dynamics (phase response
curves, Green’s functions) can be found in the Appendix.

2 Methods

2.1 Neuron model

We consider the adaptive exponential integral-and-fire
(aEIF) neuron model (Brette and Gerstner 2005; Touboul
and Brette 2008) in a normalized setup similar to that
studied in Schwalger and Lindner (2013)

v̇ = f (v) + μ − a + ξ(t), (1)

τaȧ = −a + Av + τa�
∑

i

δ(t − ti ), (2)

Here time is measured in multiples of the membrane time
constant. Equation (1) describes the evolution of the mem-
brane equation, which is determined by the constant mean
input current μ, a white noise current of vanishing mean
value and correlation function 〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′)
(δ(t) is the Dirac delta function andD is the noise intensity).
The nonlinear function

f (v) = −v + �T exp [(v − 1)/�T ]. (3)
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includes a leak term and an exponential function (approxi-
mating a persistent sodium current) with �T being the slope
factor quantifying the sharpness of the spike. Our choice of
a vanishing leak reversal potential means that our voltage
variable measures the difference to the leak reversal poten-
tial and that it is measured in multiples of the difference
between leak reversal and the voltage at which the expo-
nent of the exponential function switches its sign. As usual
for integrate-and-fire models, upon reaching the threshold
vth = 1.5, we register a spike time ti and reset the volt-
age to vr = 0. For the remaining parameters of the voltage
equation we choose μ = 25, �T = 0.2, and τa = 5.

The variable a ≥ 0 enters Eq. (1) as a cell-intrinsic
(non-synaptic) hyperpolarizing current and is governed by
Eq. (2). The dynamics of a is affected by the voltage in
two ways. First, the spikes generated by the aforementioned
threshold criterion lead to an abrupt increase by � of the
adaptation variable, the so-called spike-triggered adapta-
tion corresponding to the last term on the r.h.s. in Eq. (2).
Secondly, the subthreshold voltage v affects the adapta-
tion variable also if no spike is generated. The strength of
this subthreshold adaptation is quantified by parameter A.
For simplicity, we adopt the assumption that the potential
around which the subthreshold adaptation is linearized is
equal to the leak potential (Brette and Gerstner 2005); any
other value can be lumped into the base current by a simple
transformation.

2.2 Behavior of the model with strong mean input
current

In the absence of noise (D = 0), for sufficiently large input
current μ and not too strong subthreshold adaptation, the
aEIF neuron exhibits periodic spiking (Touboul and Brette
2008; Naud et al. 2008) (after transients due to initial condi-
tions have decayed). In this case, there exists a deterministic
limit cycle (v0(t), a0(t)) with a stable period T ∗ (i.e. ISI)
and a constant value a∗ = a

(
t+i

)
(here a

(
t+i

)
denotes the

value immediately after the spike time ti). Such a limit cycle
for a large values of μ and A is shown in Fig. 1a. The
figure also illustrates the existence of a fixed point, which
is, however, unstable.

If we now increase the strength of subthreshold adap-
tation, the fixed point becomes stable via a subcritical
Andronov-Hopf bifurcation. A typical trajectory for this
case is shown in Fig. 1b and displays the bistability between
the stable limit cycle (red) and the stable focus (blue). Both
attractors are separated by an unstable limit cycle. For weak
noise (e.g. D=0.001 as used in the simulation of Fig. 1) tran-
sitions between the two states do practically not occur in a
finite simulation time. For larger noise, switchings between
the two states may result in a high variability of the inter-
spike interval. In the following, we will mark parameter

regions of bistability by a grey background in all plots where
appropriate. For numerical simulations in this parameter
regime we will always start the system close to the limit
cycle (in the tonically firing state). Finally, if we go with the
subthreshold adaptation parameter beyond a critical value
(e.g. by choosing A = 31.5 as in Fig. 1c), the stable focus
is the only remaining stable attractor1 in the system (cf.
Fig. 1c).

For our analytical approximation we will assume
throughout the paper, that the system is kept close to the
limit cycle and that noise is so weak that it changes the
mean ISI, compared to the deterministic case, only little. We
will see that our theory (which is entirely based on calcu-
lations of perturbations around the limit cycle) works well
also in the region of bistability as long as we choose initial
conditions close to the limit cycle.

2.3 Statistics of interest

Subsequent spike times of the model define the interspike
intervals (ISIs) Ti = ti − ti−1. The firing rate of the neuron
is given by the inverse of the mean interval

r = 1

〈Ti〉 (4)

where the average 〈. . . 〉 is taken over the sequence of ISIs.
It is instructive to relate time scales and rates in our non-
dimensional model to real-time values. With a membrane
time constant of τm = 20ms, values of τa = 5 and r = 1
correspond to an adaptation constant of 100ms and a firing
rate of 50Hz.

The variability of the intervals can be quantified by the
coefficient of variation (CV), the ratio of the intervals’
standard deviation and its mean:

Cv =
√〈(Ti − 〈Ti〉)2〉

〈Ti〉 (5)

The CV is zero for a strictly periodic spike train as, for
instance, in our system generated in the absence of noise
(D = 0). The CV of a completely random spike train, a
Poisson process, is one.

The statistics of central interest in our study is the serial
correlation coefficient (SCC), given by

ρk = 〈(Ti − 〈Ti〉)(Ti+k − 〈Ti+k〉)〉
〈(Ti − 〈Ti〉)2〉 , (6)

where Ti and Ti+k are two ISIs, lagged by an integer k. A
positive coefficient ρ1 implies that adjacent intervals Ti and
Ti+1 show (on average) similar deviations from the mean,

1In this case, the unstable subthreshold limit cycle still exists, while
the unstable spike-associated limit cycle involving the voltage reset has
become unstable itself. Perturbations around the spike limit cycle will
grow in an oscillatory manner, can then overcome the inner unstable
limit cycle due to the reset rule and go eventually to the stable focus.



592 J Comput Neurosci (2015) 38:589–600

0 0.5 1 1.5
v

22

24

26

a

0 0.5 1 1.5
v

22

24

26

a

0 0.5 1 1.5
v

22

24

26

a

a b c

Fig. 1 Phase-space trajectories for different strength of subtreshold
adaptation. (a): For a moderate value of A = 22 a stable limit cycle
(thick solid line) is the only attractor in the system. Small noise (D =
10−3 in all panels) will lead to small deviations from the limit cycle,
that are described faithfully by our perturbation calculation. (b): For
a larger value of A = 28, the stable limit cycle coexists with a stable
fixed point (target of the thick dark grey trajectory). The fixed point
is given by the intersection of the null clines (dotted lines in all pan-
els) for the voltage, av̇=0(v) = f (v) + μ, and the adaptation variable,
aȧ=0(v) = Av. The domain of attraction for the fixed point is rather

small: the light grey trajectory starts close to the initial point of the
dark grey trajectory but ends up on the limit cycle. For long simulations
started close to the limit cycle, the ISI statistics can still be described
by our theory (which is based on perturbations around the limit cycle)
because noise is too weak to observe any transitions to the fixed point
attractor. (c): For A = 31.5 and, hence, beyond a critical value of A,
the limit cycle solution is not stable anymore and only the stable fixed
point exists. This excitable regime is clearly outside the scope of our
analytical approximation. In all panels: � = 2, μ = 25

i.e. they are both shorter or both longer than 〈Ti〉. In con-
trast, negative correlations between adjacent intervals mean
that a short interval is followed by a long one and/or vice
versa. Typically, whatever the sign of the correlation is,
they become smaller if we consider intervals that are further
apart; in particular, lim

k→∞ ρk = 0.

We note that if the system operates in the bistable regime
of coexistence of limit cycle and stable focus, our statistics
is, strictly speaking, not stationary but conditioned on the
initial values of v and a, which are chosen close to the stable
limit cycle. The problem of the dwell times in either states
and their effect on the ISI statistics is an interesting one but
beyond the scope of this article.

2.4 Calculation of the SCC ρk

With weak noise input, both voltage v(t) and adaptation
variable a(t) will deviate from the deterministic limit cycle,
deviations that we denote by δv(t) = v(t) − v0(t) and
δa(t) = a(t) − a0(t), respectively (here time t starts at
a spike time ti on the voltage reset). Obviously, also the
roundtrip time is not fixed anymore but characterized by
small deviations δTi = Ti − T ∗. While the voltage always
starts with the same value, there is a variability in the start-
ing points of δai = δa(t+i ) = ai − a∗. It is exactly this
initial value in a(t) that carries memory about previous ISIs
and hence leads to correlations among the ISIs.

The weak deviation of the ISI, δTi+1 can be related to the
perturbations by the noise and by the initial perturbation of
the adaptation variable via the infinitesimal phase response
curves (PRCs) of the system:

δTi+1 = −
∫ T ∗

0
dt Z(t)ξ(ti + t) − δaiZa(0). (7)

The PRCs Z(t) and Za(t) can be obtained through the
adjoint equations of the linearized neuron model (see
Appendix). In Eq. (7), the knowledge of Z(t) suffices,
because Za(0) = − ∫ T ∗

0 ds Z(s)e−s/τa . We can rewrite the
above equation as follows

δTi+1 = −Za(0)δai − ξi, (8)

where ξi = ∫ T ∗
0 dt Z(t)ξ(ti + t) is a sequence of uncor-

related Gaussian random numbers with correlation function

〈ξiξi+k〉 = 2Dδk,0

∫ T ∗

0
ds Z2(t), (9)

where δi,j is the Kronecker delta. A useful relation for the
deviation δai is based on the formal integration of Eq. (2)
over one ISI, connecting ai+1 = a

(
t+i+1

)
and ai = a

(
t+i

)

ai+1 = aie
−Ti+1

τa + A

τa

∫ ti+Ti+1

ti

dt ′v(t ′)e
−(ti−t ′)

τa e
−Ti+1

τa + �.

(10)

Without noise and under the assumption made above, this
adaptation map (Touboul and Brette 2008) will approach a
steady state, which is formally given by

a∗ = � + (A/τa)e
−T ∗/τa

∫ T ∗
0 ds v0(s)e

s/τa

1 − exp[−T ∗/τa] . (11)

This is not a closed-form solution, because it still contains
the period T ∗ of the deterministic limit cycle and the voltage
trajectory v0(t), which also depend on a∗.

In the presence of noise (D > 0), Eq. (10) can be lin-
earized with respect to the small deviations δv(t), δai , and
δTi results in

δai+1 = αδai − βδTi+1 + α
A

τa

∫ T ∗

0
ds δv(s) es/τa (12)
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with

α = exp[−T ∗/τa], (13)

β = a∗ α

τa

+ A
α

τa

[
1

τa

∫ T ∗

0
ds v0(s) es/τa − vth

α

]
. (14)

Note that besides the obvious dependence on the ampli-
tude A in these equations, the deterministic limit cycle
(v0(t), a0(t)) and its period also depend on the strength
of subthreshold and spike-triggered adaptation, A and �,
respectively.

The last integral term in Eq. (12) can be expressed via the
Green’s function δXg(T

∗, s) of the perturbation dynamics
from Eqs. (1)-(2) (see Appendix), as

α

τa

∫ T ∗

0
ds δv(s) es/τa = −δai

∫ T ∗

0
ds δXg(T

∗, s) e−s/τa

+
∫ T ∗

0
ds δXg(T

∗, s) ξ(ti +s).(15)

Combining this relation with Eq. (12) and Eq. (7), we obtain
a stochastic map for δai :

δai+1 = αθ · δai + ηi (16)

where

θ = 1 + βZa(0)

α
− A

α

∫ T ∗

0
ds δXg(T

∗, s)e−s/τa (17)

(where we used that Za(0) = − ∫ T ∗
0 ds exp(−s/τa)Z(s),

see Appendix) and

ηi =
∫ T ∗

0
ds (βZ(s) + AδXg(T

∗, s)) ξ(ti + s) (18)

are Gaussian random numbers with correlation function

〈ηiηi+k〉 = 2Dδk,0

∫ T ∗

0
ds (βZ(s) + AδXg(T

∗, s))2 (19)

The stochastic map Eq. (16) can be formally solved [by
recursively applying Eq. (16)], yielding

δai+k = (αθ)kδai +
k−1∑

j=0

(αθ)j ηi+k−1−j , (20)

from which by multiplication with δai and averaging, we
obtain

〈δai+kδai〉 = (αθ)k〈δa2i 〉 = (αθ)k
〈η2i 〉

1 − (αθ)2
(21)

(the last relation follows from squaring both sides of Eq.
(16) and averaging).

We are ultimately interested in the correlations of the
ISIs, which can be in the stationary case expressed accord-
ing to Eq. (9) as

〈δTi+kδTi〉 = 〈δTi+k+1δTi+1〉
= 〈(Za(0)δai+k + ξi+k)(Za(0)δai + ξi)〉, (22)

from which we get

〈δTi+kδTi〉 = Z2
a(0)(αθ)k

〈η2i 〉
1 − (αθ)2

+Za(0)(αθ)k−1(1 − δk,0)〈ξiηi〉
+2Dδk,0〈ξ2i 〉. (23)

From this relation, the variance of the ISI (k = 0) and the
covariance can be determined and from these statistics we
can calculate the CV and the SCC. Because the formulas
are lengthy, a thoughtful choice of auxiliary expressions is
helpful and convenient for checking limit cases.

For the squared CV we obtain

C2
v = 2D

(T ∗)2

(
Ē + β̂

1 − (αθ)2
Ḡ

)
(24)

and for the SCC with k > 0 we get

ρk = ϕk−1 (1 − ϕ2)β̂F̄ + ϕβ̂2Ḡ

(1 − ϕ2)Ē + β̂2Ḡ
. (25)

In these formulas we used the abbreviations:

β̂ = e−T ∗/τa
Za(0)

τa

[
a∗ + A

(∫ T ∗

0

ds

τa

v0(s)e
s/τa

−vthe
T ∗/τa

)]
, (26)

ϕ = e−T ∗/τa + β̂ − A

∫ T ∗

0
ds e−s/τa δXg(T

∗, s), (27)

Ē =
∫ T ∗

0
ds Z2(s), (28)

F̄ =
∫ T ∗

0
ds Z(s)

(
Z(s) + A

β̂
Za(0)δXg(T

∗, s)
)

, (29)

Ḡ =
∫ T ∗

0
ds

(
Z(s) + A

β̂
Za(0)δXg(T

∗, s)
)2

. (30)

The values of T ∗, a∗ and Za(0) and the functions
v0(s), Z(s), and δXg(s) can be determined numerically
from the deterministic system; see Appendix.

In the limit case of A = 0 (pure spike-triggered adapta-
tion), Ē = F̄ = Ḡ and β̂ = ϕ − e−T ∗/τa (here Eq. (17) has
been used). Using θ = ϕ/α = ϕeT ∗/τa , the SCC in this case
reads

ρk = −(αθ)k−1α(1 − θ)(1 − α2θ)

1 + α2 − 2α2θ
, (31)

which agrees with the result by Schwalger and Lindner
(2013).
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3 Results

Our general result for the SCC has the form

ρk = a · bk−1, k ≥ 1. (32)

Although the evaluation of the two parameters a and
b requires numerical computations for the deterministic
(noiseless) system, the result Eq. (32) allows already a
number of insights without any numerical work.

First of all, the dependence of the serial correlation coef-
ficient on the lag k is that of a geometric series. This is
a remarkably simple result, which constrains possible SCC
patterns, that can occur in this model. Compared to the pre-
vious result on pure spike-triggered adaptation (Schwalger
and Lindner 2013), it also demonstrates that subthresh-
old adaptation does not change the principle mathematical
structure of the solution. Secondly, the parameters a and b

may attain different signs, which lead to different correla-
tion patterns. For b > 0 the possible correlation patterns
are a monotonic reduction of initially positive (a > 0) or
negative (a < 0) correlations. For b < 0 the correlations
oscillate with increasing lag, starting with a positive (a > 0)
or negative (a < 0) correlation coefficient at lag one. As
the numerical evaluation below reveals, in the presence of
both subthreshold and spike-triggered adaptation, indeed all
four correlations patterns can be found by varying parame-
ters. Note that for the case of pure spike-triggered adaptation
in an exponential integrate-and-fire neuron, only b < 0 is
possible, corresponding to only two of the above four cases
(Schwalger and Lindner 2013). Hence, although subthresh-
old adaptation does not change the geometric dependence
on the lag, correlation patterns nevertheless change qual-
itatively under subthreshold adaptation because positive
correlations become possible.

In the following we compare the theoretical results for
the CV and the correlation coefficients to results of stochas-
tic simulations of Eqs. (1) and (2). For completeness we
will also compare the firing rate with its deterministic limit,
i.e. the inverse of T ∗, the limit cycle period of the noiseless
system.

3.1 Possible correlation patterns

In Fig. 2 we compare the correlation coefficient ρk as a
function of the lag to numerical simulations. We do so for
various combinations of the subthreshold adaptation param-
eter A and the spike-triggered adaptation parameter �,
including the cases of a pure subthreshold adaptation (� =
0, first row in Fig. 2) and pure spike-triggered adaptation
(A = 0, leftmost column in Fig. 2). All other parameters
are fixed except for the noise intensity. We choose different
noise intensities for different values of A (different columns
in Fig. 2) because it is the small parameter of our theory.

How small this parameter must be, depends strongly on the
other parameters2. Note that with our choice of parameters
we condone that the model is not for all combinations of A

and � in the physiological regime. If adaptation is switched
off (i.e. for A = 0, � = 0) we observe firing rates r > 10,
which, assuming τm =20ms, correspond to rates in real time
that are larger than 500Hz. More physiologically reasonable
parameter changes will be discussed below.

The simple parameter variation in Fig. 2 illustrates sev-
eral points we want to make. First of all, if the noise level is
appropriately adjusted, our theory (lines) can reproduce the
simulation results (symbols) for a wide range of parameter
values for the subthreshold and spike-triggered adaptation.
The result of our calculation for perturbations around the
limit cycle are valid in the tonic firing regime (all panels in
Fig. 2 with white background) but also in the case of bista-
bility between focus point and limit cycle (panels in Fig. 2
with grey background) if trajectories are started close to the
limit cycle. Generally, as a rule of thumb, our theory works
well for CVs below 0.2.

Secondly, as hypothesized above we can observe all
kinds of correlation patterns that are possible according to
Eq. (32). Starting with the trivial case of the renewal pro-
cess in Fig. 2-a1 in absence of both adaptation mechanisms
(A = 0, � = 0), we see in the leftmost column the patterns
for pure spike-triggered adaptation (Schwalger and Lindner
2013): a negative SCC at lag one that decays monotonically
for small �, (e.g. Fig. 2-c1) or in an oscillatory fashion for
larger values of � (c.f. Fig. 2-d1). For pure subthreshold
adaptation (� = 0, first row in Fig. 2), the neuron displays
positive correlations at all lags. This is in marked contrast to
the negative correlations induced by spike-triggered adapta-
tion. Positive correlations can be as strong as ρ1 = 0.4 for
larger values of A (Fig. 2-a4). Positive correlations can be
even enhanced if weak spike-triggered adaptation is added
(compare e.g. Fig. 2-a3 and b3). By a combination of both
spike-triggered and subthreshold adaptation, we can further-
more observe oscillatory correlations that start with ρ1 > 0
(c.f. Fig. 2-c4). Finally, if both spike-triggered and sub-
threshold adaptation are very strong, serial correlations are
suppressed (c.f. Fig. 2-d4). This can be explained as fol-
lows. Due to a strongly reduced firing rate, the adaptation
process becomes fast compared to each single ISI — a limit,
in which we can expect the spike statistics of a renewal
process.

2Choosing a very small noise intensity for all parameters entails other
difficulties: if the jitter of the interspike interval (order of CV · T ∗)
becomes very small (of the order of the discrete time step �t), numer-
ical errors in the simulation results due to the discrete nature of our
integration scheme can be expected. These errors can be reduced
by decreasing the time step, which may become computationally
expensive.
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Fig. 2 Correlation patterns
induced by spike-triggered and
subthreshold adaptation.
Comparison of theory (lines)
and simulation results
(symbols). Varied are the values
of � (different rows) and A

(different columns). For the
different columns the value of
the noise intensity has been
adjusted as indicated. The grey
shading indicates bistability of
the deterministic system, i.e. for
these parameters a stable focus
point and the limit cycle coexist.
Only perturbations of the limit
cycle, however, are taken into
account by our theory and play a
role at the small noise intensities
used in the simulations
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Although positive correlations in our examples occur if
the limit cycle coexists with the stable fixed point (as indi-
cated by the grey background of the plots and as illustrated
in Fig. 1b), such bistability is not a necessary condition for
positive ISI correlations. Below we give a counter example.

In order to illustrate the interval statistics, we show in
Fig. 3 time courses of the voltage and the adaptation vari-
able and also plot the interspike interval sequence. We use
two selected parameter sets from Fig. 2, namely, the case
of strong pure spike-triggered adaptation (Fig. 2-d1) in (a)
and that of strong subthreshold adaptation (Fig. 2-c3) in (b).
In the former case, we observe a rather noisy voltage trace
and an almost linear decay of the adaptation variable and
we see explicitly how the ISIs deviate in an alternating fash-
ion from the mean ISI. With a pronounced alternation, we
can expect that adjacent intervals and intervals with an even
number of intervals between them become negatively corre-
lated and intervals with an odd number of intervals between
them become positively correlated, i.e. we can expect a cor-
relation coefficient that oscillates with the lag. For strong
subthreshold adaptation with weaker noise shown in Fig. 3b,
the voltage time series is more regular and the time course of
the adaptation variable is nonmonotonic even for subthresh-
old voltage. This is due to the strong coupling between
voltage and adaptation for large values of A and leads to
pronounced positive correlations.

3.2 Effects of increasing the subthreshold adaptation
on the firing statistics

Above we have verified that our theory leads to correct
results, if the noise intensity is appropriately adjusted. Now,
we are particularly interested in the effect of increasing

the subthreshold adaptation without changing any other
parameters. We do this for two different values of the spike-
triggered adaptation: � = 0 in Fig. 4a to observe the way
firing statistics changes in the case of pure subthreshold
adaptation, and � = 5 in Fig. 4b to observe the way sub-
threshold adaptation affects the correlation statistics with
a pronounced spike-triggered adaptation. There is a natu-
ral limit for increasing A, because, as discussed above in
Section 2.2, eventually the system will reach an excitable
regime.

It becomes evident from Fig. 4a that a weak subthreshold
adaptation alone (� = 0, A < 10) affects the firing rate and
the CV only little and does not cause strong ISI correlations.
Larger values of A induce purely positive correlations and
lead to a strong increase in the CV. The comparison with
our theory reveals that values of the CV up to 0.2 are well
reproduced by Eq. (24).

With finite spike-triggered adaptation (� = 5 in Fig. 4b),
there is a sizeable effect on the ISI correlations already at
small values of A (below 10). The correlation coefficient
at lag two, ρ2, for instance, increases by 40 % when we
increase A from 0 to 10. Upon further increase of A both
ρ1 and ρ2 change sign (as already discussed in the context
of Fig. 2). The change takes place about A = 20, at which
point the interval statistics may look like a renewal process.
Interestingly, in the case of finite spike-triggered adaptation,
the CV becomes a nonmonotonic function of the subthresh-
old adaptation strength; it displays a shallow minimum as a
function of A.

The agreement of our theory with the simulation results
is good at all inspected noise levels except if the system is
deep in the bistable regime (shaded regions in Fig. 4), where
finite noise may cause transitions between the limit cycle
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Fig. 3 Time courses of
membrane voltage and
adaptation variable in two
distinct cases with pronounced
interspike interval correlations.
SCC patterns become apparent
by plotting the ISI sequence
(solid line) and its mean value
(dashed) versus time (top);
voltage (middle) and adaptation
variable (bottom) are shown as
well. Parameters are as in
Fig. 2-d1 (for panel a) and in
Fig. 2-c3 (for panel b)
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to the stable focus fixed point. Such bistability in the fir-
ing pattern will lead to strong variability of the ISI, which
is reflected in large values of the CV. Because ISI correla-
tions are solely due to perturbations of the tonic firing, the
increased ISI variability will also lead to a reduction of the
serial correlation coefficient (which is normalized by the ISI
variance). This drop in ρk is indeed seen in all situations
where the CV deviates strongly from the predictions of our
limit-cycle-based theory.

As mentioned above, the high mean input used in Figs.
2 and 4 allowed us to detect all possible ISI correlation
patterns by adjusting only the strength of spike-triggered
adaptation and subthreshold adaptation. However, the strong
mean drive also leads for some combinations of � and A

to unphysiological values of the firing rate. In Fig. 5 we
adjust the input current μ for every value of A such that we
keep the firing rate at r = 0.6 (with τm = 20ms this cor-
responds to a physiologically plausible 30Hz firing rate in
real time). Note that the constraint of fixed firing rate also

influences the range of possibleA values. We compare again
our theory to numerical simulations for pure subthreshold
adaptation, � = 0, in Fig. 5a and for mixed spike-triggered
and subthreshold adaptation, � = 5, in Fig. 5b and find
in both cases a good agreement, in particular, for low noise
intensities. While with fixed firing rate, the CV varies only
little with A, the correlation coefficients depend strongly on
its choice. Generally, increasing A causes a shift towards
positive ISI correlations for both values of �. Remarkably,
in this scaling it becomes evident in Fig. 5a that purely
positive ISI correlations can be also observed outside the
bistable parameter range of A (shaded parameter range), i.e.
in the tonic firing regime (regions with white background in
Fig. 5) that our theory was originally designed for. Hence,
positive ISI correlations as predicted by our theory do not
hinge on the presence of a stable focus in the deterministic
dynamics.

The simplest way in which the firing statistics can be
changed experimentally is to inject a constant current and to
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Fig. 4 Firing statistics as a function of strength of subthreshold adap-
tation. From top to bottom: firing rate, coefficient of variation of the
interspike interval, serial correlation coefficient at lag one and at lag
two. For all data we compare again theory (lines) to simulation results
(symbols) obtained with fixed noise intensity as indicated. Note that in

our theory only the CV depends on the noise intensity (the other pan-
els have only one theory curve). Strength of spike-triggered adaptation
is � = 0 in (a) [pure subthreshold adaptation] and � = 5 in (b). The
range of A for which the deterministic dynamics displays bistability
between limit cycle and stable focus is marked in grey



J Comput Neurosci (2015) 38:589–600 597

0

0.4

0.8

r Theory
D=0.005

0

0.1

0.2
CV

D=0.01
D=0.02

0

0.4ρ1

0 1 2 3 4 5
A

0

0.4ρ2

0

0.4

0.8

r Theory
D=0.01

0

0.1

0.2
CV

D=0.05
D=0.1

-0.4

0
ρ1

0 5 10 15 20
A

-0.1

0.1ρ2

a b

Fig. 5 Firing statistics as a function of strength of subthreshold adap-
tation with a fixed firing rate. From top to bottom: firing rate (kept at
0.6), coefficient of variation of the interspike interval, serial correla-
tion coefficient at lag one and at lag two. For all data we compare again
theory (lines) to simulation results (symbols) obtained with fixed noise
intensity as indicated. Note that in our theory only the CV depends

on the noise intensity (the other panels have only one theory curve).
Strength of spike-triggered adaptation is � = 0 in (a) [pure sub-
threshold adaptation] and � = 5 in (b). The range of A for which
the deterministic dynamics displays bistability between limit cycle and
stable focus is marked in grey

vary its value. In our setup this corresponds to a variation of
the parameter μ, illustrated in Fig. 6. Here we inspect two
cases of weak (a) or moderate adaptation (b). In both cases,
an increase inμ causes an increase in firing rate and a reduc-
tion of variability, which is in line with previous findings
for white-noise driven integrate-and-fire neurons (Vilela and
Lindner 2009). An increasing value of constant current leads
to strong negative correlations between adjacent ISIs if A

is small and � is large (Fig. 6a) and yields a transition
from positive to negative correlations if the subthreshold
component of adaptation is more pronounced (Fig. 6b). In
particular, if the latter transition would be observed in a
real neuron, this would suggest that both spike-triggered and
subthreshold adaptation are present in this cell.

Finally, we demonstrate in Fig. 7 that our theory works
well for arbitrary values of the adaptation time constant
τa by varying it over four orders of magnitude, i.e. our
approach does not require a slow adaptation variable. First
of all, ISI correlations vanish for τa → 0 because the
adaptation variable decays too quickly to keep any memory
about previous ISIs. In the opposite limit τa → ∞, corre-
lations between adjacent intervals approach the value −1/2
while higher correlations decay again. On physical grounds
the cumulative correlations

∑∞
j=1 ρj cannot become larger

than −1/2 and, hence, adjacent intervals become perfectly
anticorrelated if the adaptation time constant grows with-
out bound. This is, however, also accompanied by a strong
reduction of the firing rate.
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Fig. 6 Firing statistics as a function of input current. From top to
bottom: firing rate, coefficient of variation of the interspike inter-
val, serial correlation coefficient at lag one and at lag two. For all
data we compare again theory (lines) to simulation results (symbols)

obtained with fixed noise intensity as indicated. Parameters are A =
10, � = 5, τa = 5, varying μ within [10, 28] in (a), and Parameters
are A = 15, � = 2, τa = 3, varying μ within [16, 28] in (b), and all
others remain the same
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4 Summary and discussion

In this paper we have derived formulas for the CV and SCC
of a white-noise driven exponential integrate-and-fire model
with both spike-triggered and subthreshold adaptation. Our
general result predicts a geometric dependence of the SCC
on the lag. Furthermore, according to our theory by varying
the adaptation parameters, we can achieve all possible cor-
relation patterns with positive and negative correlations at
lag one and a monotonic decay or a damped oscillation with
respect to the lag. By comparison with extensive numerical
simulations, we have demonstrated that our theory indeed
reliably predicts all of these correlation patterns if the neu-
ron is kept in the mean-driven tonic firing regime and if
noise is weak. Moreover, our theory works as well in the
regime of bistability (coexistence of a stable focus point and
a stable limit cycle) if the model’s initial condition is close to
the tonic firing state and noise is sufficiently weak to avoid
transitions to the stable fixed point.

Besides providing the general correlation structure, our
theory relates the correlation statistics to properties of the
deterministic neuron: its phase response curves with respect
to perturbations in the voltage and in the adaptation current
and the Green’s function of the adaptation variable. These
functions change in a complicated and intertwined manner
when the adaptation parameters are changed. In particular,
we can change the neuron from type I (for small or van-
ishing subthreshold adaptation) having a positive PRC at

all phases to type II (for strong subthreshold adaptation)
having a PRC that is negative at early phases. These are
the changes that also contribute to the qualitative change
of the correlation pattern from negative ISI correlations for
spike-triggered adaptation to positive ISI correlations for
dominating subthreshold adaptation.

The results achieved in our paper may be useful in
interpreting existing studies. Prescott and Sejnowski (2008)
explored the role of subthreshold and spike-triggered adap-
tation for the signal transmission in conductance-based
model neurons. These authors observed that only with
spike-triggered adaptation strong negative ISI correlations
are present, whereas for dominating subthreshold adaptation
either only weak positive or vanishing ISI correlations are
possible. Although they ascribed the positive correlations to
the fact that a colored Ornstein-Uhlenbeck process was used
as a stimulus of the model neuron, we have seen here that
uncorrelated fluctuations combined with pure or dominating
subthreshold adaptation can evoke positive ISI correlations.

Our results may be applied and extended in several
directions. First of all, our theory provides a possible expla-
nation for correlation patterns of spiking neurons in vivo.
Importantly, the mechanism for nonrenewal spiking we
have discussed here is a cellular mechanism (not a net-
work mechanism) and thus should be present both in vivo
as well as in vitro. Because so far positive ISI correla-
tions have been mostly associated with correlations of the
input, providing an alternative explanation based on cellular
adaptation mechanisms is thus useful — although yet dif-
ferent mechanisms may exist that also lead to similar ISI
correlations.

Secondly, our formulas for CV and SCC may be used as
an additional tool for fitting parameters of the aEIF model
to in vivo or in vitro data. White-noise stimuli are nowa-
days routinely applied to neurons in vitro and the resulting
CV and ISI correlations can be useful as a mean to verify a
parameter fit.

Thirdly, it is promising to apply our formulas to the anal-
ysis of the long-term variability of the count statistics. In
fact, the CV and SCCs we have derived allow to compute
the asymptotic limit of the spike count’s Fano factor (Cox
and Lewis 1966)

F∞ = lim
t→∞

〈�N2(t)〉
〈N(t)〉 = C2

v

[
1 + 2

∞∑

k=1

ρk

]
. (33)

According to this formula, positive ISI correlations lead to
an increase in the Fano factor, whereas negative correla-
tions may strongly reduce it. Consequently, the detection of
a static stimulus (based on estimates of spike counts) can be
facilitated by negative correlations and will be deteriorated
by positive ISI correlations. These effects are well-known
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from numerical simulations (Chacron et al. 2001; Ratnam
and Nelson 2000; Prescott and Sejnowski 2008) and sim-
plified models (Chacron et al. 2004; Nikitin et al. 2012).
In the framework of our theory, the effect of ISI correla-
tions on signal detection can be inspected and discussed for
a biophysically reasonable point neuron model.

Acknowledgments LS would like to thank the hospitality of Bern-
stein Center for Computational Neuroscience (BCCN) Berlin. LS was
supported in part by the BCCN Berlin and by the National Science
Foundation (DMS-1226282). TS and BL were supported by the Bun-
desministerium für Bildung und Forschung (FKZ:01GQ1001A). TS
was supported by the European Research Council (Grant Agreement
no. 268689, MultiRules).

Conflict of interests The authors declare that they have no conflict
of interest.

Appendix

Phase response curves (PRC)

The phase-dependent sensitivity of the ISI in response to
a stimulus εδ(t − t ′) added on the right-hand-side of Eq.
(1) can be characterized by the infinitesimal PRC defined
as

Z(t ′) = − lim
ε→0

δT (t ′, ε)
ε

with δT (t ′, ε) being the change of the spike period due
the δ-stimulation at the “phase” t ′ ∈ [0, T ∗]. Analo-
gously, the sensitivity with respect to a perturbation ετaδ(t−
t ′) added on the right-hand-side of Eq. (2) can be like-
wise defined by the negative infinitesimal relative change
of the ISI. This sensitivity with respect to the adapta-
tion variable will be denoted by Za(t

′). Let the linearized
system (1-2) be Ẋ = J (t)X, and X = (v, a)T and
J (t) being the Jacobian matrix evaluated at the deter-
ministic limit cycle (v0(t), a0(t))

T , then the infinitesimal
PRCs Z(t) and Za(t) satisfy the adjoint equations Ẏ =
−J T Y with Y = (Z, Za)

T (Ermentrout and Terman 2010)
as

(
Ż

Ża

)
=

(
− ∂f (v0,a0)

∂v
− A

τa

1 1
τa

)(
Z

Za

)
(34)

with the normalization condition v̇0(t)Z(t) + ȧ0(t)Za(t) =
1, which can be calculated directly. On the threshold, a per-
turbation does not change the phase implying Za(T

∗) = 0
(Schwalger and Lindner 2013). With this condition, the sec-
ond equation of Eq. (34) satisfying Ża = Z + 1

τa
Za leads to

Za(0) = − ∫ T ∗
0 Z(s)e

−s
τa ds.

Green’s function

To calculate A
τa

∫ T ∗
0 dt ′δv(t ′)e

−(T ∗−t ′)
τa , we start with the

perturbation dynamics

δv̇ = λ(t)δv − δa + ξ(t), (35)

τaδȧ = −δa + Aδv, (36)

where λ(t) = df (v0(t))/dv, with initial conditions δv(0) =
0, δa(0) = δai . The solution to Eq. (36) is δa(t) =
δaie

−t/τa + δx(t), where δx(t) satisfies τaδẋ = −δx +Aδv

with δx(0) = 0. Hence, the desired quantity is given by

A

τa

∫ T ∗

0
δv(t ′)e−(T ∗−t ′)/τa dt ′ = δx(T ∗)

= A

∫ T ∗

0
dt ′ δXg(T

∗, t ′)[ξ(t ′) − δaie
−t ′/τa ]. (37)

Here, we used the Green’s function δXg(t, t
′) which is the

solution of

∂

∂t
δvg(t, t

′)= λ(t)δvg(t, t
′)−AδXg(t, t

′)+δ(t−t ′),(38)

τa

∂

∂t
δXg(t, t

′)=−δXg(t, t
′) + δvg(t, t

′), (39)

with δvg(0, t ′) = δXg(0, t ′) = 0 and t ′ ∈ [0, T ∗]. The
two-dimensional system for the Greens function is solved
numerically.
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