www.elsevier.com/locate/amc

Oscillation criteria for impulsive parabolic boundary value problem with delay

Xilin $\mathrm{Fu}^{\text {a }}$, LieJune Shiau ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Shandong Normal University, Jinan, Shandong 250014, PR China
${ }^{\text {b }}$ Department of Mathematics, University of Houston, Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA

Abstract

In this work, we study the criteria of oscillatory solutions to impulsive parabolic boundary value problem with delay. First, we consider two types of boundary condition which resolve in oscillatory solutions in the impulsive problem with delay, then we further reduce the oscillation criteria for the problem. © 2003 Published by Elsevier Science Inc. Keywords: Oscillation criteria; Impulsive; Parabolic; Delay; Eventually positive solution

16

1. Introduction

In 1991, Erbe et al. [1] first studied impulsive parabolic equations in application models. Later in 1994 Bainov et al. [2], extended the impulsive study in hyperbolic partial differential equations for periodic boundary value problem. Fu and Liu [3] then further studied oscillation criteria for impulsive hyperbolic problems in 1997. In this work, we study oscillation criteria for impulsive parabolic problem with delay which was not previously studied.

[^0]
2. Preliminaries

Consider the following impulsive parabolic system with delay

$$
\begin{align*}
& u_{t}=a(t) \Delta u+b(t) \Delta u(t-\rho, x)-p(t, x) f(u(t-\sigma, x)), \quad t \neq t_{k}, \tag{2.1}\\
& u\left(t_{k}^{+}, x\right)-u\left(t_{k}^{-}, x\right)=I(t, x, u), \quad t=t_{k}, \quad k=1,2, \ldots
\end{align*}
$$

where

1. Δ is the Laplacian in $\mathbf{R}^{n} ; u=u(t, x)$ for $(t, x) \in G=\mathbf{R}_{+} \times \Omega$, where Ω is a bounded domain in \mathbf{R}^{n} with a smooth boundary $\partial \Omega$ and $\mathbf{R}_{+}=[0,+\infty)$, 2. $0<t_{1}<t_{2}<\cdots<t_{k}<\cdots$, where $\lim _{k \rightarrow \infty} t_{k}=+\infty$,
2. $a(t), b(t) \in P C\left[\mathbf{R}_{+}, \mathbf{R}_{+}\right], p(t, x) \in P C\left[\mathbf{R}_{+} \times \bar{\Omega}, \mathbf{R}_{+}\right]$, and $P C$ is the class of piecewise continuous functions in t with discontinuities of first kind only at $t=t_{k}, k=1,2, \ldots$ and left continuous at $t=t_{k}$ and $\bar{\Omega}$ is the closure of Ω; Also, we have $f(u) \in C[\mathbf{R}, \mathbf{R}]$,
3. both ρ and σ are positive constants, and
4. $I: \mathbf{R}_{+} \times \bar{\Omega} \times \mathbf{R} \mapsto \mathbf{R}$.

We shall consider two kinds of boundary condition in this study:

$$
\begin{equation*}
\frac{\partial u}{\partial N}+h(x) u=g(t, x), \quad(t, x) \in \mathbf{R}_{+} \times \partial \Omega, \quad t \neq t_{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\varphi(t, x), \quad(t, x) \in \mathbf{R}_{+} \times \partial \Omega, \quad t \neq t_{k}, \tag{2.3}
\end{equation*}
$$

where $h(x) \in(\partial \Omega,(0,+\infty)), g(t, x)$ and $\varphi(t, x) \in P C\left[\mathbf{R}_{+} \times \partial \Omega, R\right]$, and N is the unit out normal vector to $\partial \Omega$.

We know that the solutions $u(t, x)$ of problem (2.1) with boundary condition either (2.2) or (2.3) are both piecewise continuous functions with points of discontinuity of first kind at $t=t_{k}, k=1,2, \ldots$ Following the convention, we shall assume that they are left continuous. That is, at the moments of impulse, the following relations $u\left(t_{k}^{-}, x\right)=u\left(t_{k}, x\right)$ and $u\left(t_{k}^{+}, x\right)=u\left(t_{k}, x\right)+I\left(t_{k}, x, u\left(t_{k}, x\right)\right)$ are satisfied. Next, we recall the definition of oscillatory solutions.

Definition 2.1. A nonzero solution $u(t, x)$ of boundary value problem (2.1), (2.2) or problem (2.1), (2.3) is said to be nonoscillatory in the domain G, if there exists a number $\tau \geqslant 0$ such that $u(t, x)$ has a constant sign for $(t, x) \in[\tau,+\infty) \times \Omega$. Otherwise, it is said to be oscillatory.

Now, we are ready to develop oscillation criteria.

3. Sufficient conditions for oscillatory solutions

54 Consider the following Robin eigenvalue problem

$$
\begin{align*}
& \Delta u+\lambda u=0, \quad x \in \Omega \\
& \frac{\partial u}{\partial N}+h(x) u=0, \quad x \in \partial \Omega \tag{3.1}
\end{align*}
$$

56 where λ is a constant. Then, we have the following properties which will lead to 57 the oscillation.

58 Lemma 3.1. If $h(x) \in C(\partial \Omega,(0,+\infty))$, then the Robin eigenvalue problem (3.1)
59 has a minimum positive eigenvalue λ_{0} and the corresponding eigenfunction $\eta(t)$ is 60 positive on Ω (see Theorem 3.3.22 of [4]).

61 Lemma 3.2. Let $h(x) \in C(\partial \Omega,(0,+\infty))$ and the following assumptions
62 (A1) $f(u)$ is a positive and convex function in \mathbf{R}_{+},
63 (A2) for any function $u \in P C\left[\mathbf{R}_{+} \times \bar{\Omega}, \mathbf{R}_{+}\right]$and constants $\alpha_{k}>0$ such that $\int_{\Omega} I\left(t_{k}, x, u\left(t_{k}, x\right)\right) \mathrm{d} x \leqslant \alpha_{k} \int_{\Omega} u\left(t_{k}, x\right) \mathrm{d} x, k=1,2, \ldots$

65 also hold. If $u(t, x)$ is a positive solution of problem (2.1), (2.2) in the domain $[\tau,+\infty) \times \Omega$ for some $\tau \geqslant 0$, then the impulsive differential inequality with delay

$$
\begin{align*}
& U^{\prime}(t)+\lambda_{0} a(t) U(t)+\lambda_{0} b(t) U(t-\rho)+P(t) f(U(t-\sigma)) \leqslant R(t), \quad t \neq t_{k} \\
& U\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) U\left(t_{k}\right), \quad k=1,2, \ldots \tag{3.2}
\end{align*}
$$

68 has the eventually positive solution

$$
\begin{equation*}
U(t)=\frac{1}{\int_{\Omega} \eta(x) \mathrm{d} x} \int_{\Omega} u(t, x) \eta(x) \mathrm{d} x, \tag{3.3}
\end{equation*}
$$

70 where

$$
\begin{aligned}
P(t) & =\min _{x \in \bar{\Omega}}\{p(t, x)\} \text { and } \\
R(t) & =\frac{1}{\int_{\Omega} \eta(x) \mathrm{d} x}\left[a(t) \int_{\partial \Omega} \eta(x) g(t, x) \mathrm{d} S+b(t) \int_{\partial \Omega} \eta(x) g(t-\rho, x) \mathrm{d} S\right], \\
t & \neq t_{k}, \mathrm{~d} S \text { is an area element of } \partial \Omega .
\end{aligned}
$$

Proof. Let $u(t, x)$ be a positive solution of problem (2.1), (2.2) in the domain $u(t-\rho, x)>0, u(t-\sigma, x)>0$ for $(t, x) \in\left[t^{*},+\infty\right) \times \Omega$. Multiplying both sides

75 of (2.1) by the eigenfunction $\eta(x)$ and integrating with respect to x over the 76 domain Ω, we have

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} & \int_{\Omega} u(t, x) \eta(x) \mathrm{d} x \\
= & a(t) \int_{\Omega} \Delta u(t, x) \eta(x) \mathrm{d} x+b(t) \int_{\Omega} \Delta u(t-\rho, x) \eta(x) \mathrm{d} x \\
& -\int_{\Omega} p(t, x) f(u(t-\sigma, x)) \eta(x) \mathrm{d} x, \quad t \neq t_{k}, \quad t \geqslant t^{*} . \tag{3.4}
\end{align*}
$$

78 From (A1) and Jensen's inequality, it follows that

$$
\begin{align*}
& \int_{\Omega} p(t, x) f(u(t-\sigma, x)) \eta(x) \mathrm{d} x \\
& \quad \geqslant P(t) \int_{\Omega} \eta(x) \mathrm{d} x \cdot f\left(\frac{1}{\int_{\Omega} \eta(x) \mathrm{d} x} \int_{\Omega} u(t-\sigma, x) \eta(x) \mathrm{d} x\right), \quad t \neq t_{k}, \quad t \geqslant \tau \tag{3.5}
\end{align*}
$$

80 Using Green's Theorem and Lemma 3.1, we have

$$
\begin{align*}
\int_{\Omega} \Delta u(t, x) \eta(x) \mathrm{d} x & =\int_{\partial \Omega}\left(\eta \frac{\partial u}{\partial N}-u \frac{\partial \eta}{\partial N}\right) \mathrm{d} S+\int_{\Omega} u \Delta \eta \mathrm{~d} x \\
& =\int_{\partial \Omega}(\eta(g-h u)-u(-h \eta)) \mathrm{d} S+\int_{\Omega} u\left(-\lambda_{0} \eta\right) \mathrm{d} x \\
& =\int_{\partial \Omega} \eta g \mathrm{~d} S-\lambda_{0} \int_{\Omega} u \eta \mathrm{~d} x, \quad t \neq t_{k}, \quad t \geqslant t^{*} \tag{3.6}
\end{align*}
$$

82 and

$$
\begin{align*}
& \int_{\Omega} \Delta u(t-\rho, x) \eta(x) \mathrm{d} x \\
& \quad=\int_{\partial \Omega} \eta(x) g(t-\rho, x) \mathrm{d} S-\lambda_{0} \int_{\Omega} u(t-\rho, x) \eta(x) \mathrm{d} x, \quad t \neq t_{k}, \quad t \geqslant \tau \tag{3.7}
\end{align*}
$$

84 Combining (3.4)-(3.7), we get

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} & \int_{\Omega} u(t, x) \eta(x) \mathrm{d} x+\lambda_{0} a(t) \int_{\Omega} u(t, x) \eta(x) \mathrm{d} x+\lambda_{0} b(t) \int_{\Omega} u(t-\rho, x) \eta(x) \mathrm{d} x \\
& \quad+\int_{\Omega} \eta(x) \mathrm{d} x \cdot P(t) \cdot f\left(\frac{1}{\int_{\Omega} \eta(x) \mathrm{d} x} \int_{\Omega} u(t-\sigma, x) \eta(x) \mathrm{d} x\right) \\
\leqslant & a(t) \int_{\partial \Omega} \eta(x) g(t, x) \mathrm{d} S+b(t) \int_{\partial \Omega} \eta(x) g(t-\rho, x) \mathrm{d} S, \quad t \neq t_{k}, \quad t \geqslant t^{*} \tag{3.8}
\end{align*}
$$

108 is a positive solution of the following impulsive parabolic boundary value
For $t=t_{k}$, using (A2) we have

$$
\begin{aligned}
& \int_{\Omega}\left(u\left(t_{k}^{+}, x\right)-u\left(t_{k}, x\right)\right) \eta(x) \mathrm{d} x \\
& \quad=\int_{\Omega} I\left(t_{k}, x, u\left(t_{k}, x\right)\right) \eta(x) \mathrm{d} x \leqslant \alpha_{k} \int_{\Omega} u\left(t_{k}, x\right) \eta(x) \mathrm{d} x, \quad k=1,2, \ldots
\end{aligned}
$$

That is

$$
\begin{equation*}
\int_{\Omega} u\left(t_{k}^{+}, x\right) \eta(x) \mathrm{d} x \leqslant\left(1+\alpha_{k}\right) \int_{\Omega} u\left(t_{k}, x\right) \eta(x) \mathrm{d} x, \quad k=1,2, \ldots \tag{3.9}
\end{equation*}
$$

Thus, inequalities (3.8) and (3.9) imply that the function $U(t)$ defined by (3.3) is a positive solution of the impulsive differential inequality with delay in (3.2) for $t \geqslant t^{*}$. The proof of Lemma 3.2 is therefore completed.

Theorem 3.3. Assume that conditions (A1) and (A2) hold, and $h \in C(\partial \Omega,(0,+\infty))$. If we further assume that

$$
\begin{align*}
& f(-u)=-f(u) \quad \text { for } u \in(0,+\infty), \tag{A3}\\
& I\left(t_{k}, x,-u\left(t_{k}, x\right)\right)=-I\left(t_{k}, x, u\left(t_{k}, x\right)\right), \quad k=1,2, \ldots
\end{align*}
$$

and the impulsive differential inequality with delay in both problems (3.2) and

$$
\begin{align*}
& U^{\prime}(t)+\lambda_{0} a(t) U(t)+\lambda_{0} b(t) U(t-\rho)+P(t) f(U(t-\sigma)) \leqslant-R(t), \quad t \neq t_{k}, \\
& U\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) U\left(t_{k}\right), \quad k=1,2, \ldots \tag{3.10}
\end{align*}
$$

have no eventually positive solutions, then each nonzero solution of the problem (2.1), (2.2) is oscillatory in the domain G.

Proof. Assuming the contrary is true. Let $u(t, x)$ be a nonzero solution of the problem (2.1), (2.2) which has a constant sign in the domain $[\tau,+\infty) \times \Omega$ for some $\tau \geqslant 0$. We first consider the case of $u(t, x)>0$ for $(t, x) \in[\tau,+\infty) \times \Omega$. From Lemma 3.2, it follows that the function $U(t)$ defined by (3.3) is an eventually positive solution of the inequality (3.2), which contradicts the condition of the theorem. If $u(t, x)<0$ for $(t, x) \in[\tau,+\infty) \times \Omega$, then the function

$$
\tilde{u}(t, x)=-u(t, x), \quad(t, x) \in[\tau,+\infty) \times \Omega
$$

problem with delay

6

$$
\begin{align*}
& u_{t}=a(t) \Delta u+b(t) \Delta u(t-\rho, x)-p(t, x) f(u(t-\sigma, x)), \quad t \neq t_{k}, \quad(t, x) \in G \\
& \frac{\partial u}{\partial N}+h(x) u=-g(t, x), \quad t \neq t_{k}, \quad(t, x) \in R_{+} \times \partial \Omega \\
& u\left(t_{k}^{+}, x\right)-u\left(t_{k}^{-}, x\right)=I(t, x, u), \quad t=t_{k}, \quad k=1,2, \ldots \tag{3.11}
\end{align*}
$$

111 and satisfies

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \tilde{u}(t, x) \eta(x) \mathrm{d} x+\lambda_{0} a(t) \int_{\Omega} \tilde{u}(t, x) \eta(x) \mathrm{d} x+\lambda_{0} b(t) \int_{\Omega} \tilde{u}(t-\rho, x) \eta(x) \mathrm{d} x \\
& \quad+\int_{\Omega} \eta(x) \mathrm{d} x \cdot P(t) \cdot f\left(\frac{1}{\int_{\Omega} \eta(x) \mathrm{d} x} \int_{\Omega} \tilde{u}(t-\sigma, x) \eta(x) \mathrm{d} x\right) \\
& \leqslant \tag{3.12}\\
& \quad-\left(a(t) \int_{\partial \Omega} \eta(x) g(t, x) \mathrm{d} S+b(t) \int_{\partial \Omega} \eta(x) g(t-\rho, x) \mathrm{d} S\right), \quad t \neq t_{k}, \quad t \geqslant \tau
\end{align*}
$$

113 and

$$
\int_{\Omega} \tilde{u}\left(t_{k}^{+}, x\right) \eta(x) \mathrm{d} x \leqslant\left(1+\alpha_{k}\right) \int_{\Omega} \tilde{u}\left(t_{k}, x\right) \eta(x) \mathrm{d} x, \quad k=1,2, \ldots
$$

115 Thus it follows that the function

$$
\widetilde{U}(t)=\frac{1}{\int_{\Omega} \eta(x) \mathrm{d} x} \int_{\Omega} \tilde{u}(t, x) \eta(x) \mathrm{d} x
$$

117 is a positive solution of the inequality (3.10) for $t \geqslant t^{*} \geqslant \tau$ which also contra118 dicts the conditions of the theorem. This completes the proof of Theorem 119 3.3.

120 Now, if we set $g \equiv 0$ in the proof of Theorem 3.3, then we can also obtain 121 the following theorem.

122 Theorem 3.4. Assume that conditions (A1)-(A3) hold, and $h \in C(\partial \Omega,(0,+\infty))$. 123 If the impulsive differential inequality with delay

$$
\begin{align*}
& U^{\prime}(t)+\lambda_{0} a(t) U(t)+\lambda_{0} b(t) U(t-\rho)+P(t) f(U(t-\sigma)) \leqslant 0, \quad t \neq t_{k}, \\
& U\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) U\left(t_{k}\right), \quad k=1,2, \ldots \tag{3.13}
\end{align*}
$$

125 has no eventually positive solutions, then each nonzero solution of the system 126 (2.1), satisfying the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial N}+h(x) u=0, \quad(t, x) \in R_{+} \times \partial \Omega, \quad t \neq t_{k} \tag{3.14}
\end{equation*}
$$ is oscillatory in the domain G.

The following fact shall be used later in the proof of Lemma 3.5. Consider the Dirichlet problem

$$
\begin{aligned}
& \Delta u+\lambda u=0, \quad x \in \Omega, \\
& u=0, \quad x \in \partial \Omega,
\end{aligned}
$$

132 where $\lambda=$ constant. It is well known that the smallest eigenvalue λ^{*} and the 133 corresponding eigenfunction $\Phi(x)$ are positive.

134 Lemma 3.5. Assume that (A1) and (A2) hold. If $u(t, x)$ is a positive solution of the problem (2.1), (2.3) in the domain $[\tau,+\infty] \times \Omega$ for some $\tau \geqslant 0$, then the impulsive differential inequality with delay

$$
\begin{align*}
& V^{\prime}(t)+\lambda^{*} a(t) V(t)+\lambda^{*} b(t) V(t-\rho)+p(t) f(V(t-\sigma)) \leqslant Q(t), \quad t \neq t_{k}, \\
& V\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) V\left(t_{k}\right), \quad k=1,2, \ldots \tag{3.15}
\end{align*}
$$

138 has the eventually positive solution

$$
\begin{equation*}
V(t)=\frac{1}{\int_{\Omega} \Phi(x) \mathrm{d} x} \int_{\Omega} u(t, x) \Phi(x) \mathrm{d} x \tag{3.16}
\end{equation*}
$$

140 where

$$
\begin{aligned}
Q(t) & =-\frac{1}{\int_{\Omega} \Phi(x) \mathrm{d} x}\left[a(t) \int_{\partial \Omega} \varphi(t, x) \frac{\partial \Phi}{\partial N} \mathrm{~d} S+b(t) \int_{\partial \Omega} \varphi(t-\rho, x) \frac{\partial \Phi}{\partial N} \mathrm{~d} S\right], \\
t & \neq t_{k} .
\end{aligned}
$$

Proof. Let $u(t, x)$ be a positive solution of the problem (2.1), (2.3) in the domain $[\tau,+\infty] \times \Omega$ for some $\tau \geqslant 0$. For $\tau \neq t_{k}$, there exist a $t^{*} \geqslant \tau$ such that $u(t-\rho, x), u(t-\sigma, x)>0$ for $(t, x) \in\left[t^{*},+\infty\right) \times \Omega$. Multiplying both sides of (2.1) by the eigenfunction $\Phi(x)$ and integrating with respect to x over the domain Ω, we get

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u(t, x) \Phi(x) \mathrm{d} x \\
& \quad=a(t) \int_{\Omega} \Delta u(t, x) \Phi(x) \mathrm{d} x+b(t) \int_{\Omega} \Delta u(t-\rho, x) \Phi(x) \mathrm{d} x \\
& \quad-\int_{\Omega} p(t, x) f(u(t-\sigma, x)) \Phi(x) \mathrm{d} x, \quad t \neq t_{k}, \quad t \geqslant t^{*} \tag{3.17}
\end{align*}
$$

From (A1) and Jensen's inequality, it follows that

$$
\begin{align*}
& \int_{\Omega} p(t, x) f(u(t-\sigma, x)) \Phi(x) \mathrm{d} x \\
& \quad \geqslant P(t) \int_{\Omega} \Phi(x) \mathrm{d} x \cdot f\left(\frac{1}{\int_{\Omega} \Phi(x) \mathrm{d} x} \int_{\Omega} u(t-\sigma, x) \Phi(x) \mathrm{d} x\right), \quad t \neq t_{k}, \quad t \geqslant t^{*} \tag{3.18}
\end{align*}
$$

150 Using Green's Theorem, we have

$$
\begin{align*}
& \int_{\Omega} \Delta u(t, x) \Phi(x) \mathrm{d} x \\
& = \\
& \int_{\Omega}\left(\Phi \frac{\partial u}{\partial N}-u \frac{\partial \Phi}{\partial N}\right) \mathrm{d} S+\int_{\Omega} u \Delta \Phi(x) \mathrm{d} x=\int_{\partial \Omega}\left(-\varphi(t, x) \frac{\partial \Phi}{\partial N}\right) \mathrm{d} S \tag{3.19}\\
& \quad+\int_{\Omega} u\left(-\lambda^{*} \Phi\right) \mathrm{d} x, \quad t \neq t_{k}, \quad t \geqslant t^{*} .
\end{align*}
$$

152 And

$$
\begin{align*}
& \int_{\Omega} \Delta u(t-\rho, x) \Phi(x) \mathrm{d} x \\
& \quad=-\int_{\partial \Omega} \varphi(t-\rho, x) \frac{\partial \Phi}{\partial N} \mathrm{~d} S-\lambda^{*} \int_{\Omega} u(t-\rho, x) \Phi(x) \mathrm{d} x, \quad t \neq t_{k}, \quad t \geqslant t^{*} . \tag{3.20}
\end{align*}
$$

154 Combining (3.17)-(3.20), we get

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} u(t, x) \Phi(x) \mathrm{d} x+\lambda^{*} a(t) \int_{\Omega} u(t, x) \Phi(x) \mathrm{d} x+\lambda^{*} b(t) \int_{\Omega} u(t-\rho, x) \Phi(x) \mathrm{d} x \\
& \quad+\int_{\Omega} \Phi(x) \mathrm{d} x \cdot P(t) \cdot f\left(\frac{1}{\int_{\Omega} \Phi(x) \mathrm{d} x} \int_{\Omega} u(t-\sigma, x) \Phi(x) \mathrm{d} x\right) \\
& \leqslant \tag{3.21}
\end{align*}
$$

156 For $t=t_{k}$, using (A2) we have

$$
\begin{equation*}
\int_{\Omega} u\left(t_{k}^{+}, x\right) \Phi(x) \mathrm{d} x \leqslant\left(1+\alpha_{k}\right) \int_{\Omega} u\left(t_{k}, x\right) \Phi(x) \mathrm{d} x, \quad k=1,2, \ldots \tag{3.22}
\end{equation*}
$$

158 Thus we can see that the function $V(t)$ defined in (3.16) is a positive solution of 159 the impulsive differential inequality with delay (3.15) for $t \geqslant t^{*}$. Thus the proof 160 of Lemma 3.5 is complete.

183 Lemma 4.1. If there exists a constant $\delta>0$ such that

$$
t_{k+1}-t_{k} \geqslant \delta, \quad k=1,2, \ldots
$$

Theorem 3.6. Assume that conditions (A1)-(A3) hold. If we assume further that both the impulsive differential inequality with delay (3.15) and the impulsive differential inequality with delay

$$
\begin{aligned}
& V^{\prime}(t)+\lambda^{*} a(t) V(t)+\lambda^{*} b(t) V(t-\rho)+P(t) f(V(t-\sigma)) \leqslant-Q(t), \quad t \neq t_{k}, \\
& V\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) V\left(t_{k}\right), \quad k=1,2, \ldots
\end{aligned}
$$

have no eventually positive solutions, then each nonzero solution of the problem (2.1), (2.3) is oscillatory in the domain G.

Since this proof is similar to Theorem 3.3, we omit it. Furthermore, if we set $\varphi \equiv 0$, then we can have the following theorem.

Theorem 3.7. Assume that conditions (A1)-(A3) hold. If the impulsive differential inequality with delay

$$
\begin{aligned}
& V^{\prime}(t)+\lambda^{*} a(t) V(t)+\lambda^{*} b(t) V(t-\rho)+P(t) f(V(t-\sigma)) \leqslant 0, \quad t \neq t_{k} \\
& V\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) V\left(t_{k}\right), \quad k=1,2, \ldots
\end{aligned}
$$

have no eventually positive solutions, then each nonzero solution of system (2.1) satisfying the boundary condition

$$
u=0, \quad(t, x) \in R_{t} \times \partial \Omega, \quad t \neq t_{k}
$$

is oscillatory in the domain G.

4. Further oscillation criteria

From the discussion in previous section, it follows that the problem of establishing oscillation criteria for the impulsive parabolic system (2.1) satisfying some boundary condition can be reduced to the investigation of the properties of the solutions of the first order impulsive differential inequalities. In this section, we shall establish some further oscillation criteria for the impulsive parabolic systems.
then there exists a constant $r \in N$ such that the number of the impulse moments in each of the intervals $\left[t, t+\rho^{*}\right], t>0$ is not greater than r, where $\rho^{*}=\max \{\rho, \sigma\}$.

187 Proof. It is easy to see that in each interval of the form $\left[t, t+\rho^{*}\right], t>0$, we have at most $1+\left[\frac{\rho^{*}}{\delta}\right]$ impulse moments. Thus we can choose

$$
r \geqslant 1+\left[\frac{\rho^{*}}{\delta}\right]
$$

Theorem 4.2. Assume that conditions (A1)-(A3) hold, and $h \in C(\partial \Omega,(0,+\infty))$. 191 If we assume further that

192 1. there exists a constant $\delta>0$, such that

$$
t_{k+1}-t_{k} \geqslant \delta, \quad k=1,2, \ldots,
$$

194 2. there exists a constant $\alpha>0$, such that

$$
0<\alpha_{k}<\alpha, \quad k=1,2, \ldots,
$$

1963.

$$
\limsup _{k \rightarrow+\infty} \int_{t_{k}}^{t_{k}+\rho} b(s) \mathrm{e}^{\lambda_{0} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s>\frac{1}{\lambda_{0}}(1+\alpha)^{2 r}
$$

198 then each nonzero solution of the problem (2.1), (3.14) is oscillatory in the domain $199 G$

200 Proof. Let $u(t, x)$ be a nonzero solution of the problem (2.1), (3.14) which has a constant sign in the domain $[\tau,+\infty] \times \Omega$ for some $\tau \geqslant 0$. If $u(t, x)>0$ for $(t, x) \in[\tau,+\infty] \times \Omega$, then we can see that the function $U(t)$ defined by (3.3) a positive solution of the inequality (3.15) for $t \geqslant \tau+\rho^{*}$ and $U(t-\rho)>0$, $f(U(t-\sigma))>0$ for $t \geqslant \tau+\rho^{*}$. For $t \neq t_{k}$, from (3.15) we get

$$
\begin{equation*}
U^{\prime}(t)+\lambda_{0} a(t) U(t)+\lambda_{0} b(t) U(t-\rho) \leqslant 0, \quad t \geqslant \tau+\rho^{*} . \tag{4.1}
\end{equation*}
$$

206 Multiply (4.1) by $\mathrm{e}^{\lambda_{0} \int_{T}^{t} a(\xi) \mathrm{d} \xi}$ for $t>T \geqslant \tau+\rho^{*}$, and set

$$
\begin{equation*}
y(t)=U(t) \mathrm{e}^{\lambda_{0} \int_{T}^{t} a(\xi) \mathrm{d} \xi}, \quad t>T \tag{4.2}
\end{equation*}
$$

208 We obtain

$$
\begin{equation*}
y^{\prime}(t)+\mathrm{e}^{\lambda_{0} \int_{T}^{t} a(\xi) \mathrm{d} \xi} \lambda_{0} b(t) y(t-\rho) \mathrm{e}^{-\lambda_{0} \int_{T}^{t-\rho} a(\xi) \mathrm{d} \xi} \leqslant 0, \quad t \neq t_{k}, \quad t>T+\rho . \tag{4.3}
\end{equation*}
$$

210 From (4.2) and (4.3), it follows that $y(t)$ is a nonincreasing function. For $t=t_{k}$,

$$
\begin{aligned}
\Delta y\left(t_{k}\right) & =y\left(t_{k}^{+}\right)-y\left(t_{k}\right)=\left[U\left(t_{k}^{+}\right)-U\left(t_{k}\right)\right] \mathrm{e}^{\lambda_{0} \int_{T}^{t} a(\xi) \mathrm{d} \xi} \\
& \leqslant \alpha_{k} U\left(t_{k}\right) \mathrm{e}^{\lambda_{0} \int_{T}^{t} a(\xi) \mathrm{d} \xi}=\alpha_{k} y\left(t_{k}\right) .
\end{aligned}
$$

212 Integrate (4.3) from t_{k} to $t_{k}+\rho$ and use Lemma 4.1, we have

$$
\begin{equation*}
y\left(t_{k}+\rho\right)-y\left(t_{k}^{+}\right)-\sum_{s=k}^{k+r-1} \alpha_{s} y\left(t_{s}\right)+\int_{t_{k}}^{t_{k}+\rho} \lambda_{0} b(s) \mathrm{e}^{\lambda_{0} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} y(s-\rho) \mathrm{d} s \leqslant 0 . \tag{4.4}
\end{equation*}
$$

214 Note that

$$
\begin{equation*}
y(s-\rho) \geqslant \frac{y(s-\rho)}{(1+\alpha)^{r}} \tag{4.5}
\end{equation*}
$$

216 From (4.4) and (4.5), we have

$$
\begin{aligned}
& \frac{\lambda_{0}}{(1+\alpha)^{r}} \int_{t_{k}}^{t_{k}+\rho} b(s) \mathrm{e}^{\lambda_{0} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} y(s-\rho) \mathrm{d} s \\
& \quad \leqslant y\left(t_{k}^{+}\right)-y\left(t_{k}+\rho\right)+\sum_{s=k}^{k+r-1} \alpha_{s} y\left(t_{s}\right) \leqslant\left(1+\alpha_{k}\right) y\left(t_{k}\right)+\sum_{s=k+1}^{k+r-1} \alpha_{s} y\left(t_{s}\right)
\end{aligned}
$$

218 and

$$
\begin{equation*}
\frac{\lambda_{0}}{(1+\alpha)^{r}} y\left(t_{k}\right) \int_{t_{k}}^{t_{k}+\rho} b(s) \mathrm{e}^{\lambda_{0} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s \leqslant(1+\alpha) y\left(t_{k}\right)+\alpha \sum_{s=k+1}^{k+r-1} y\left(t_{s}\right) . \tag{4.6}
\end{equation*}
$$

220 But

$$
\begin{aligned}
& y\left(t_{k+1}\right) \leqslant y\left(t_{k}^{+}\right) \leqslant\left(1+\alpha_{k}\right) y\left(t_{k}\right) \leqslant(1+\alpha) y\left(t_{k}\right), \\
& y\left(t_{k+2}\right) \leqslant y\left(t_{k+1}^{+}\right) \leqslant\left(1+\alpha_{k+1}\right) y\left(t_{k+1}\right) \leqslant(1+\alpha) y\left(t_{k+1}\right) \leqslant(1+\alpha)^{2} y\left(t_{k}\right), \\
& \cdots \\
& y\left(t_{k+r-1}\right) \leqslant \cdots \leqslant(1+\alpha)^{r-1} y\left(t_{k}\right) .
\end{aligned}
$$

222 Then

$$
\begin{equation*}
\sum_{s=k+1}^{k+r-1} y\left(t_{s}\right) \leqslant y\left(t_{k}\right) \sum_{i=1}^{r-1}(1+\alpha)^{i}=y\left(t_{k}\right)(1+\alpha) \frac{(1+\alpha)^{r-1}-1}{\alpha} . \tag{4.7}
\end{equation*}
$$

224 From (4.6) and (4.7), it follows that

$$
\begin{aligned}
& \frac{\lambda_{0}}{(1+\alpha)^{r}} y\left(t_{k}\right) \int_{t_{k}}^{t_{k}+\rho} b(s) \mathrm{e}^{\lambda_{0} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s \\
& \quad \leqslant(1+\alpha) y\left(t_{k}\right)+\alpha y\left(t_{k}\right)(1+\alpha) \frac{(1+\alpha)^{r-1}-1}{\alpha}=y\left(t_{k}\right)(1+\alpha)^{r} .
\end{aligned}
$$

226 That is

$$
\int_{t_{k}}^{t_{k}+\rho} b(s) \mathrm{e}^{\lambda_{0} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s \leqslant \frac{1}{\lambda_{0}}(1+\alpha)^{2 r} .
$$

3. there exists a constant $\alpha>0$, such that

$$
0<\alpha_{k}<\alpha, \quad k=1,2, \ldots
$$

2444.

$$
\limsup _{k \rightarrow+\infty} \int_{t_{k}}^{t_{k}+\sigma} P(s) \mathrm{e}^{\lambda_{0} \int_{s-\sigma}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s>\frac{1}{A}(1+\alpha)^{2 r}
$$

The last inequality contradicts condition 3 in Theorem 4.2. If $u(t, x)<0$ for $(t, x) \in[\tau,+\infty) \times \Omega$, then it is easy to check that $-u(t, x)$ is a positive solution of the problem (2.1) and (3.14) for $(t, x) \in[\tau,+\infty) \times \Omega$. Thus there is contradiction, by the analogous arguments, the proof is therefore completed.

It is important to note that the resulting condition involving the coefficient of delayed Laplacian $b(t)$. This result is obtained through the method of Robin eigenfunction. But this result cannot be obtained by the method in [3]. We can prove the following result by the analogous arguments as in the proof of Theorem 4.2.

Theorem 4.3. Assume that conditions (A1)-(A3) hold, and $h \in C(\partial \Omega,(0,+\infty))$. If we assume further that

1. $\frac{f(u)}{u} \geqslant A, u \in(0,+\infty)$ for some constant $A>0$,
2. there exists a constant $\delta>0$, such that

$$
t_{k+1}-t_{k} \geqslant \delta, \quad k=1,2, \ldots
$$

then each nonzero solution of the problem (2.1), (3.14) is oscillatory in the domain G.

Theorem 4.4. Assume that conditions (A1)-(A3) hold. If we assume further that conditions 1 and 2 in Theorem 4.2 and 3

$$
\limsup _{k \rightarrow+\infty} \int_{t_{k}}^{t_{k}+\rho} b(s) \mathrm{e}^{\lambda^{*} \int_{s-\rho}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s>\frac{1}{\lambda^{*}}(1+\alpha)^{2 r}
$$

also hold, then each nonzero solution of the problem (2.1), (3.25) is oscillatory in the domain G.

Theorem 4.5. Assume that conditions (A1)-(A3) hold. If we assume further that conditions 1-3 in Theorem 4.3 and 4

$$
\limsup _{k \rightarrow+\infty} \int_{t_{k}}^{t_{k}+\sigma} P(s) \mathrm{e}^{\lambda^{*} \int_{s-\sigma}^{s} a(\xi) \mathrm{d} \xi} \mathrm{~d} s>\frac{1}{A}(1+\alpha)^{2 r}
$$

also hold, then each nonzero solution of the problem (2.1), (3.25) is oscillatory in the domain G.

Acknowledgements

Xilin Fu acknowledges the support by National Natural Science Foundation of China (10171057) and by Natural Science Foundation of Shandong Province. LieJune Shiau acknowledges the partial support by Faculty Research Support Fund of University of Houston, Clear Lake.

References

[1] L.H. Erbe, J.I. Freedman, X.Z. Liu, J.J. Wu, Comparison principles for impulsive parabolic equations with applications to models of single species growth, J. Aust. Math. Soc. Sec. B 32 (1991) 382-400.
[2] D. Bainov, Z. Kamont, E. Minchev, Periodic boundary value problem for impulsive hyperbolic partial differential equations of first order, Appl. Math. Comput. 80 (1994) 1-10.
[3] X. Fu, X. Liu, Oscillation criteria for impulsive hyperbolic systems, Dyn. Cont. Disc. Imp. Syst. 3 (1997) 225-244, 3139-3161.
[4] Q.X. Ye, Z.Y. Li, Introduction to Reaction Diffusion Equations, Science Press, Beijing, 1990.

[^0]: * Corresponding author.

 E-mail address: shiau@cl.uh.edu (L. Shiau).

