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Abstract

In this work, we study the criteria of oscillatory solutions to impulsive parabolic
boundary value problem with delay. First, we consider two types of boundary condition
which resolve in oscillatory solutions in the impulsive problem with delay, then we
further reduce the oscillation criteria for the problem.
© 2003 Published by Elsevier Science Inc.
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1. Introduction

In 1991, Erbe et al. [1] first studied impulsive parabolic equations in ap-
plication models. Later in 1994 Bainov et al. [2], extended the impulsive study
in hyperbolic partial differential equations for periodic boundary value prob-
lem. Fu and Liu [3] then further studied oscillation criteria for impulsive hy-
perbolic problems in 1997. In this work, we study oscillation criteria for
impulsive parabolic problem with delay which was not previously studied.
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2. Preliminaries

Consider the following impulsive parabolic system with delay
u, = a(t)Au+ b(t)Au(t — p,x) — p(t,x)f (u(t — 0,x)), t# t, 2.1
uty x) —u(t,,x) =1(t,x,u), t=t, k=12,...,
where
1. A is the Laplacian in R"; u = u(t,x) for (¢,x) € G =R, x Q, where Q is a

bounded domain in R” with a smooth boundary 0Q and R, = [0, +c0),
2.0<ti <thb <+ <ty <---, where lim;_ t; = +o0,

3. a(t), b(t) € PC[R.,R,], p(t,x) € PCIR, x Q,R,], and PC is the class of
piecewise continuous functions in ¢ with discontinuities of first kind only
at t=1¢, k=1,2,... and left continuous at ¢ = #, and Q is the closure of
Q; Also, we have f(u) € C[R,R],

4. both p and ¢ are positive constants, and

5.1:R, x Q x R—R.

We shall consider two kinds of boundary condition in this study:

d
% +h()u = g(t,x), (6,x) ER. x0Q, t#14 (2.2)

and
u=o(tx), (t,x)eR, x0Q, t#1, (2.3)

where 4(x) € (02, (0,+00)), g(¢,x) and @(¢,x) € PC[R, x 0Q,R], and N is the
unit out normal vector to 0Q.

We know that the solutions u(¢,x) of problem (2.1) with boundary condition
either (2.2) or (2.3) are both piecewise continuous functions with points of
discontinuity of first kind at t = #, k = 1,2,... Following the convention, we
shall assume that they are left continuous. That is, at the moments of impulse,
the following relations u(#; ,x) = u(t,x) and u(t},x) = u(ty,x) + I(tg, x, u(t;, x))
are satisfied. Next, we recall the definition of oscillatory solutions.

Definition 2.1. A nonzero solution u(#,x) of boundary value problem (2.1),
(2.2) or problem (2.1), (2.3) is said to be nonoscillatory in the domain G, if
there exists a number 7 >0 such that u(¢,x) has a constant sign for
(t,x) € [r,400) x Q. Otherwise, it is said to be oscillatory.

Now, we are ready to develop oscillation criteria.
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3. Sufficient conditions for oscillatory solutions

Consider the following Robin eigenvalue problem

Au+iu=0, xe€Q,

Ou (3.1)
6_N+ h(x)u=0, xe€0Q,

where / is a constant. Then, we have the following properties which will lead to
the oscillation.

Lemma 3.1. If h(x) € C(0Q, (0,+0c0)), then the Robin eigenvalue problem (3.1)
has a minimum positive eigenvalue )y and the corresponding eigenfunction 1(t) is
positive on Q (see Theorem 3.3.22 of [4]).

Lemma 3.2. Let h(x) € C(0Q, (0,+00)) and the following assumptions

(A1) f(u) is a positive and convex function in R,
(A2) for any function u € PC[R, x Q R,] and constants oy >0 such that
Jo I (e, x, u(te, x)) dx <oy [, u(te,x)dx, k=1,2,...

also hold. If u(t,x) is a positive solution of problem (2.1), (2.2) in the domain
[t,+00) x Q for some t = 0, then the impulsive differential inequality with delay
U'(0) + 20a(0)U(1) + Job()U(t = p) + PO)S(U(t — ) SR(1), ¢ # i,
U ) <(I+o)U(n), k=1,2,...
(3.2)

has the eventually positive solution
o |,
U(t) =————— [ u(t,x)n(x)dx, 3.3
0= s J,u9m (33)

where

P() = min{p(t,x)} and

RO =t 200 | 10900045 +00) [ wlete—px)as).

t £ t, dS is an area element of 0Q.

Proof. Let u(z,x) be a positive solution of problem (2.1), (2.2) in the domain
[t,4+00) x Q for some t>0. For t#f, there exists a # >t such that
u(t—p,x) >0, u(t —a,x) > 0 for (t,x) € [t*, 400) x Q. Multiplying both sides
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of (2.1) by the eigenfunction #(x) and integrating with respect to x over the
domain Q, we have

& Qu(t,x)r[(x)dx

= alt) [ Aute )b+ b0) [ Aue = p.no)ds
Q Q
- [ ol emedr, £, 0> (3.4)
Q
From (A1) and Jensen’s inequality, it follows that

[ plen)stute = o) ax
>P(t)/gz1(x)dx-f(m/Qu(t—a,x)n(x)dx), 14 h, i3

(3.5)
Using Green’s Theorem and Lemma 3.1, we have
Ou on
= ——u— |dS Andx
/QAu(t,x)ﬂ(x)dx y <11 N u@N) + /Qu n
— [ tale ~ h) = u(-h)ds + [ u=ian) s
0Q Q
= / ngdsS — /lo/ur]dx, t#t, t=t (3.6)
oQ Q
and
[ dute = pontn)ax
Q
= / n(x)g(t — p,x)dS — 4 / u(t—p,x)n(x)dx, t#n, t=1.
0Q Q
(3.7)

Combining (3.4)-(3.7), we get

%/Qu(t,x)n(x)dx—kioa(t)/

Q

+/Qn<x>dx.p<t>-f(mfguu—o,x)n(j)dx)

<a(r) /6911(x)g(t,x) dS + b(¢) /asln(x)g(t —p,x)dS, t#4, t=r.
(3.8)

u(t, X)) dx + Job (1) / u(t — p,x)n(x) d
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For ¢ = #;, using (A2) we have
[ wtef5) = ulae s
Q

= /Ql(thx,u(tk,x))n(x)dxgack/u(tk,x)n(x) dx, k=1,2,...

Q

That is

/Qu(l;’,x)n(x)dxg (14 o) / u(te, x)n(x)dx, k=1,2,... (3.9)

Q

Thus, inequalities (3.8) and (3.9) imply that the function U(¢) defined by (3.3) is
a positive solution of the impulsive differential inequality with delay in (3.2) for
t = t*. The proof of Lemma 3.2 is therefore completed. [

Theorem 3.3. Assume that conditions (Al) and (A2) hold, and
h € C(0Q,(0,+00)). If we further assume that

(A3) f(-u)=—=f(u) forue(0,+00),
I(ty,x, —u(ty,x)) = =I(ty,x,u(ty,x)), k=12,...

and the impulsive differential inequality with delay in both problems (3.2) and

U'(1) + 7aa())U (1) + (Ut — p) + P)S(U(t — 0)) < —R(1), 141,
UEH) <1 +o0)Ut), k=1,2,...
(3.10)

have no eventually positive solutions, then each nonzero solution of the problem
(2.1), (2.2) is oscillatory in the domain G.

Proof. Assuming the contrary is true. Let u(z,x) be a nonzero solution of the
problem (2.1), (2.2) which has a constant sign in the domain [z, +00) x Q for
some 7 > 0. We first consider the case of u(z,x) > 0 for (¢,x) € [r,4+00) x Q.
From Lemma 3.2, it follows that the function U(¢) defined by (3.3) is an
eventually positive solution of the inequality (3.2), which contradicts the
condition of the theorem. If u(t,x) <0 for (¢,x) € [t,+00) x Q, then the
function

u(t,x) = —u(t,x), (t,x) € [r,+00) x Q

is a positive solution of the following impulsive parabolic boundary value
problem with delay
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u, = a(t)Au+ b(t)Au(t — p,x) — p(t,x)f (u(t — 0,x)), t#k, (t,x)€G

%Jrh(x)u:—g(t,x), t#tka (tax) ER, x0Q
u(t;,x)_”(t; X)Zl(t,x,u), L=, k:1727
(3.11)
111 and satisfies
d
G [t d+ 200 [ ateont)d + doblo) [ ate— poomir)
Q Q Q

+/Qn<x>dx-p<t>-f(m/ﬂr—a,x)n(x)dx)

< — (alt) /mn<x>g<t,x>ds+b<r> /mn@g(t_p,x)da, Al 13
(3.12)

113 and
/ﬁ(tk*,x)n(x)dxg(l—i—ock)/ﬁ(tk,x)r/(x)dx, k=1,2,...
Q o

115 Thus it follows that the function

Ul(t) :m /Qﬁ(nx)n(x)dx

117 is a positive solution of the inequality (3.10) for ¢ > ¢* > t© which also contra-
118 dicts the conditions of the theorem. This completes the proof of Theorem
119 33. O

120 Now, if we set g = 0 in the proof of Theorem 3.3, then we can also obtain
121 the following theorem.

122 Theorem 3.4. Assume that conditions (A1)—(A3) hold, and h € C(0Q, (0,+0c0)).
123 If the impulsive differential inequality with delay
U'(t) + 20a(t)U(8) + 20b()U(t — p) + P()f(U(t — 0)) <0, t#1,
UG <(1+a)Ul), k=1,2,...
(3.13)

125 has no eventually positive solutions, then each nonzero solution of the system
126 (2.1), satisfying the boundary condition

g_]’\‘[+ h(x)u=0, (t,x) ER, x0Q, t+14 (3.14)
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is oscillatory in the domain G.

The following fact shall be used later in the proof of Lemma 3.5. Consider
the Dirichlet problem
Au+iu=0, xe€Q,
u=0, xe€0dQ

where A= constant. It is well known that the smallest eigenvalue A* and the
corresponding eigenfunction @(x) are positive.

Lemma 3.5. Assume that (Al) and (A2) hold. If u(t,x) is a positive solution of
the problem (2.1), (2.3) in the domain [t,400] X Q for some © >0, then the
impulsive differential inequality with delay

V/(t) + Fa(t)V (1) + IV (= p) + pO)f (V= 0) SO, 14 1,
V) <1+ o)V (4), k=1,2,...

(3.15)
has the eventually positive solution
erd)
V(t) =———— [ u(t,x)®(x)dx, 316
where
1 o od
o) = —W {a(t) /ag (p(t,x)ﬁdS—i—b(t) /m o(t —p,x)ﬁdS ?

2‘75[/{.

Proof. Let u(z,x) be a positive solution of the problem (2.1), (2.3) in the domain
[t,+00] x Q for some t>0. For t##, there exist a 7 >t such that
u(t — p,x),u(t —o,x) > 0 for (¢,x) € [, +00) x Q. Multiplying both sides of
(2.1) by the eigenfunction ®(x) and integrating with respect to x over the do-
main Q, we get
I
- M X X
de X
/Autx dx—|—b()/Au(t—p,x)d3(x)dx
Q
—/ pt,x)f(u(t — 0,x))P(x)dx, t#t, t=t". (3.17)
Q

From (A1) and Jensen’s inequality, it follows that
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/Q p(2)f (ult — 0,))D(x) dx

>P(t)/g<p(x)dx.f(m/Qu(t—m)qxx)dx), thh, >0

(3.18)
150 Using Green’s Theorem, we have
/ Au(t,x)B(x) dx
Q
Ou Rl Rl
= _— _— A = —_— )y =
/Q<¢6N uaN>dS+/Qu d(x)dx ag< q)(t,x)aN)dS
+/u(—/1*<15)dx, t#£t, t=1. (3.19)
Q

152 And

/ Au(t — p,x)®(x)dx
0
= —AQ QD(f— Paﬂ%dS— i*‘/Qu(t_ p,x)(D(x)dx7 t;é tk; t > f*.
(3.20)

154 Combining (3.17)—(3.20), we get

%/Qu(t,x)<1>(x)dx+)L*a(t)/gu(nx)(b(x)dx+/1*b(t)/u(t_p,x)q;(x)dx

Q

Rl Rl
< —alt t,x—dS—bt/( t—p,x)=—dS, t#¢, t=r¢.
0 [ olengyds =) [ ot-pggds, i#n
(3.21)

156 For t = t;, using (A2) we have

/Qu(z,j,x)qs(x)dxg(l+ak)/u(tk,x)qs(x)dx, k=1,2,... (3.22)

Q

158 Thus we can see that the function V' (¢) defined in (3.16) is a positive solution of
159 the impulsive differential inequality with delay (3.15) for ¢ > ¢*. Thus the proof
160 of Lemma 3.5 is complete. [
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Theorem 3.6. Assume that conditions (A1)—(A3) hold. If we assume further that
both the impulsive differential inequality with delay (3.15) and the impulsive
differential inequality with delay
Vi(t) + Za()V (1) + 2°b()V (L = p) + P(O)f(V(t —0)) < = Q1), t#1,
V(f;)<(1+06k)V(tk)7 k:1,2,
(3.23)

have no eventually positive solutions, then each nonzero solution of the problem
(2.1), (2.3) is oscillatory in the domain G.

Since this proof is similar to Theorem 3.3, we omit it. Furthermore, if we set
¢ = 0, then we can have the following theorem.

Theorem 3.7. Assume that conditions (A1)—(A3) hold. If the impulsive differ-
ential inequality with delay
V(&) + 2a(t)V (e) + 2b()V(t—p) + P(O)f(V(t—06)) <0, t#t,
V) < +o)V(t), k=1,2,...
(3.24)

have no eventually positive solutions, then each nonzero solution of system (2.1)
satisfying the boundary condition

u=0, (t,x) ER x0Q, t#u (3.25)

is oscillatory in the domain G.

4. Further oscillation criteria

From the discussion in previous section, it follows that the problem of es-
tablishing oscillation criteria for the impulsive parabolic system (2.1) satisfying
some boundary condition can be reduced to the investigation of the properties
of the solutions of the first order impulsive differential inequalities. In this
section, we shall establish some further oscillation criteria for the impulsive
parabolic systems.

Lemma 4.1. If there exists a constant 6 > 0 such that
byl — =0, k=1,2,...,

then there exists a constant r € N such that the number of the impulse moments in
each of the intervals [t,t + p*], t > 0 is not greater than r, where p* = max{p,a}.
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Proof. It is easy to see that in each interval of the form [¢,7 + p*], # > 0, we have
at most 1 4 [5] impulse moments. Thus we can choose

p*
= — .
r/l—l—[é] O

Theorem 4.2. Assume that conditions (A1)~(A3) hold, and h € C(0Q, (0, +00)).
If we assume further that
1. there exists a constant 6 > 0, such that
lk+1—tk>5, k:1,2,...7
2. there exists a constant o > 0, such that

O<oy <o, k=1,2,...,

3.
letp o [0 ae)de 1 .
lim sup / b(s)e” Joye@ Tds > — (1+a)”,
k—+00 e Ao
then each nonzero solution of the problem (2.1), (3.14) is oscillatory in the domain

G.

Proof. Let u(¢,x) be a nonzero solution of the problem (2.1), (3.14) which has a
constant sign in the domain [7,4o00] X Q for some 7 > 0. If u(¢,x) > 0 for
(t,x) € [r,+00] x Q, then we can see that the function U(¢) defined by (3.3) a
positive solution of the inequality (3.15) for ¢t =1+ p* and U(r — p) > 0,
f(U(t—0)) >0 fort =1+ p*. For t # t;, from (3.15) we get

U'(t) + 20a(t)U (1) + 20b()U(t — p) <0, =1+ p". (4.1)
Multiply (4.1) by ¢” O >T > 1+ p*, and set

W) = U Jr?O% p 5T, (4.2)
We obtain

o t—p .
V() + O bt — p)e e O% <o £ g, 1> T +p.
(4.3)

From (4.2) and (4.3), it follows that y(¢) is a nonincreasing function. For ¢ = #,

A1) = y(8) = (1) = [U() = Ulw))e 9

<o U(1)e 9% Z (1),
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Integrate (4.3) from #, to # + p and use Lemma 4.1, we have

k=1 ftp s
Y+ p) = y(55) = Y ay(t) + [k Job(s)e "Iy (s — pyds <0,
- (4.4)
Note that
O @3)
From (4.4) and (4.5), we have

tk+p
20 ))/ iof C)dé S p) ds
I

(1+a
ktr—1 k+r=1
<o) = y(t+p) + Y ay(t) <L+ a)y(t) + > op(t)
s=k s=k+1
and
1 te+p Lo s k+r—1
a jrooc)ry(tk>/ b(s)e” f.y,/,"@d“'dsg (1 +a)y(ty) + o Z »(t).  (4.6)
t s=k+1
But
W(ter) <y(60) < (1 + a)y(t) < (1 + a)y(t),
Y(ter2) <y(ty) < (14 o)y (1) < (1 + a)y(ter) < (14 “)Zy(tk)v
V() < - < (14 a) y(n).
Then
k+r—1 r—1 (1 + O()r71 1
() <y(w) Y (1 +0) = p(t)(1 + o) ————. (4.7)
s=k+1 i=1
From (4.6) and (4.7), it follows that
Ao e [ e
et [ e
(140" =1 ,
<(1+a)(n) + () (1 +2) = = y(1)(1 + ).

o

That is
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ltp i [ ate)de 1 .
/ b(s)e oI Ofgs< — (14 a)”.
" Ao

The last inequality contradicts condition 3 in Theorem 4.2. If u(¢,x) < 0 for
(t,x) € [t,400) x Q, then it is easy to check that —u(z,x) is a positive solution
of the problem (2.1) and (3.14) for (z,x) € [r,+00) x Q. Thus there is con-
tradiction, by the analogous arguments, the proof is therefore completed. [

It is important to note that the resulting condition involving the coefficient
of delayed Laplacian b(¢). This result is obtained through the method of Robin
eigenfunction. But this result cannot be obtained by the method in [3]. We can
prove the following result by the analogous arguments as in the proof of
Theorem 4.2.

Theorem 4.3. Assume that conditions (A1)—(A3) hold, and h € C(0Q, (0, 400)).
If we assume further that

1. @ = A, u € (0,4+00) for some constant A > 0,

2. there exists a constant 6 > 0, such that
lk+1—tk>5, k:1,2,...7

3. there exists a constant o. > 0, such that

O<oy <o, k=1,2,...,

4.
ty+o 5 g 1
lim sup / P(s)e” UL S (1+a)”,
k=400 Jy A
then each nonzero solution of the problem (2.1), (3.14) is oscillatory in the domain

G.

Theorem 4.4. Assume that conditions (A1)—(A3) hold. If we assume further that
conditions 1 and 2 in Theorem 4.2 and 3

fte 27 ae)de 1
lim sup / b(s)e” [ ds > — (1 + )
k—+4o00 e

also hold, then each nonzero solution of the problem (2.1), (3.25) is oscillatory in
the domain G.

Theorem 4.5. Assume that conditions (A1)—-(A3) hold. If we assume further that
conditions 1-3 in Theorem 4.3 and 4
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ti+o Iy s 5 de 1

lim sup / P(s)e” Jo a4 g >=(1+a)”
k—+o00 7% A

also hold, then each nonzero solution of the problem (2.1), (3.25) is oscillatory in

the domain G.
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