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Although variability is a ubiquitous characteristic of the nervous system, under appropriate
conditions neurons can generate precisely timed action potentials. Thus considerable attention
has been given to the study of a neuron’s output in relation to its stimulus. In this study,
we consider an increasingly popular spiking neuron model, the adaptive exponential integrate-
and-fire neuron. For analytical tractability, we consider its piecewise-linear variant in order to
understand the responses of such neurons to periodic stimuli. There exist regions in parameter
space in which the neuron is mode locked to the periodic stimulus, and instabilities of the mode
locked states lead to an Arnol’d tongue structure in parameter space. We analyze mode locked
solutions and examine the bifurcations that define the boundaries of the tongue structures. The
theoretical analysis is in excellent agreement with numerical simulations, and this study can be
used to further understand the functional features related to responses of such a model neuron
to biologically realistic inputs.

Keywords : Periodic stimuli; mode locked solutions; Arnol’d tongue; piecewise-linear adaptive
exponential integrate-and-fire neuron.

1. Introduction

Frequency selectivity in the form of mode locking
has been shown in stimulated nervous systems, such
as complex sounds in the auditory nerve [Moller,
1983], hair cells in amphibian cochlea [Koch, 1999],
and thalamocortical relay neuron response [Smith
et al., 2000; Knight, 1972; McCormick & Hugue-
nard, 1992]. To understand the mechanisms behind
these phenomena, spiking neuron models have been
used to study the precise timing of firing events

thought to underlie frequency mode locking [Rieke
et al., 1997]. Among them, various one-dimensional
neuron models, such as variants of leaky integrate-
and-fire model, are of particular interest for their
reduced complexity. The disadvantages of these
models are their limitations in producing a vari-
ety of neuronal behaviors, and having parameters
of little biophysiological relevance. On the contrary,
high-dimensional neuron models such as variants of
the Hodgkin–Huxley model, though more capable of
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producing various neuronal behaviors and with bio-
physiologically relevant parameters, generally pose
difficulty in their mathematical analysis.

In recent years substantial efforts have been
exerted to develop single neuron models of reduced
complexity that can produce a large repertoire
of neuronal behaviors, in attempts to develop an
understanding of brain function, while reducing
computation demands and maintaining analytical
tractability. A number of variants of two-dimen-
sional leaky integrate-and-fire neuron models have
been proposed. A popular example is the adap-
tive exponential leaky integrate-and-fire (aEIF)
model, proposed by Brette and Gerstner [Brette &
Gerstner, 2005; Gerstner & Brette, 2009], which
includes a subthreshold and a spike-triggered adap-
tation component in one adaptation current, and
the exponential description of nearly instantaneous
spike initiation. More importantly, this model’s
parameters are of biophysiological relevance, and
its subthreshold and spike triggered adaptation
are shown to mediate spike frequency adaptation
[Ladenbauer et al., 2012], behaving in a way sim-
ilar to a low threshold outward current, such as
the muscarinic voltage-dependent K+-current (Im),
and a high threshold outward current, such as
the Ca2+-dependent after hyperpolarization K+-
current (Iahp), respectively, in biophysical neuron
models [Ermentrout et al., 2001; Jeong & Gutkin,
2007; Ermentrout et al., 2011; Ladenbauer et al.,
2012]. Despite its simplicity, the aEIF model
can capture a broad range of neuronal dynamics
[Touboul & Brette, 2008; Naud et al., 2008], hence
it is appropriate for applications in large-scale net-
works [Destexhe, 2009]. Furthermore, the aEIF
model has been successfully fit to Hodgkin–Huxley-
type neurons, as well as to recordings from cortical
neurons [Brette & Gerstner, 2005; Clopath et al.,
2007; Touboul & Brette, 2008; Jolivet et al., 2008].
This model has also been implemented in neuromor-
phic hardware systems [Brüderle et al., 2011], and
can be tuned to reproduce the behavior of all major
classes of neurons, as defined electrophysiologically
in vitro [Naud et al., 2008].

Based on the increasingly common use of the
aEIF model, here we explore mode locked solu-
tions, where the neuron is periodically driven by
an external stimulus. To gain explicit results, we
adopt the piecewise-linear variant of the aEIF
(PWL-aEIF) model to study these mode locked
solutions. Specifically, we perform the analysis of

arbitrary mode locked states for a sinusoidal exter-
nal stimulus.

The work presented here is similar to that in
other papers considering periodically-forced neu-
ron models [Coombes et al., 2001; Coombes et al.,
2012; Laing & Coombes, 2005; Alijani, 2009; Svens-
son & Coombes, 2009], however, the mode lock-
ing instabilities in this study are shown to largely
be related to period-doubling of solutions and the
saddle-node bifurcation of orbits which cross a par-
ticular manifold multiple times, which has not been
previously observed. We first present the discon-
tinuous differential equations describing the peri-
odically forced PWL-aEIF neuron model. This is
followed by the construction of general solutions
and then the description of mode locked solutions
and their stability. We then show numerical results
demonstrating our analysis, and discuss the maxi-
mal Lyapunov exponent of an arbitrary orbit. We
conclude with a discussion.

2. Neuron Model

We consider a piecewise-linear approximation of
the adaptive exponential integrate-and-fire (PWL-
aEIF) neuron [Naud et al., 2008] with state vari-
ables V (t) and w(t) representing the cell membrane
potential and adaptive current, respectively, of the
neuron. (PWL neuron models have been studied
a number of times over the past 10 years [Kar-
bowski & Kopell, 2000; Coombes et al., 2001;
Coombes & Zachariou, 2009; Coombes et al., 2012;
Tonnelier, 2002].) The evolution of these variables
between firing events is described according to the
following equations,

C
dV

dt
= f(V ) − w + I(t), (1)

τw
dw

dt
= a(V − EL) − w, (2)

where f(V ) = −gL(V − EL), for V ≤ VT , and
f(V ) = gL∆T (V − E), for V > VT , with E =
VT + VT −EL

∆T
. The function f(V ) is continuous and

the V -nullcline, on which dV/dt = 0, is shown
schematically in Fig. 1 for the case I(t) = 0. For
analytical tractability, the parameter a is set to be
a = 0 [in (2)] in this study resulting in a horizontal
w-nullcline. The physiological interpretation of the
parameters is as follows [Touboul & Brette, 2008].
Equation (1) states that the capacitive current
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through the membrane is the sum of the ionic cur-
rents and the injected current, I(t) (C is the mem-
brane capacitance). The term f(V ) represents the
leak current, with gL being the leak conductance,
EL being the leak reversal potential, and the mem-
brane time constant being C/gL. The V -nullcline
has its minimum at V = VT , and the slope fac-
tor ∆T quantifies the sharpness of the spike. The
variable w in (2) is an adaptive current with time
constant τw, and may model ionic currents such as
potassium, or a dendritic compartment. The neuron
is assumed to fire whenever V (t) reaches a thresh-
old Vth, and then V (t) is instantaneously reset to
Vr and w(t) is instantaneously incremented by an
amount b (b ≥ 0) as{

V (t) �→ Vr,

w(t) �→ w(t) + b.

We denote by {tn}n∈N the set of firing times, where
V (t−n ) = Vth and V (t+n ) = Vr.

We can further write the system (1) and (2) as

Ẋ =

{
A1X + g1(t), if V ≤ VT ,

A2X + g2(t), if V > VT ,
(3)

where X = (V,w)T ,

A1 =



−gL

C

−1
C

0
−1
τw


, (4)

A2 =




gL∆T

C

−1
C

0
−1
τw


, (5)

g1(t) =




I(t) + gLEL

C

0


, (6)

and

g2(t) =




I(t) − gL∆T E

C

0


. (7)

The general solution of this type of linear sys-
tem with the initial condition X(t0) is (writing

eAt ≡ G(t))

X(t) = G(t − t0)X(t0) +
∫ t−t0

0
G(s)g(t − s)ds,

(8)

where A ∈ {Ai} and g ∈ {gi}, i = 1, 2. More specif-
ically,

eA1t ≡ G1(t)

=



e

−gL
C

t −τw(e
−gL

C
t − e

−1
τw

t)
C − gLτw

0 e
−1
τw

t




=


G1

11(t) G1
12(t)

G1
21(t) G1

22(t)




=


G1

11(t) k1(G1
11(t) − G1

22(t))

0 G1
22(t)


, (9)

where k1 = −τw
C−gLτw

and

eA2t ≡ G2(t)

=


e

gL∆T
C

t −τw(e
gL∆T

C
t − e

−1
τw

t)
C + gL∆T τw

0 e
−1
τw

t




=


G2

11(t) G2
12(t)

G2
21(t) G2

22(t)




=


G2

11(t) k2(G2
11(t) − G2

22(t))

0 G2
22(t)


, (10)

where k2 = −τw
C+gL∆T τw

, and G1
22(t) = G2

22(t).

3. A General Spiking Orbit

With the PWL-aEIF system written as (3), we can
construct a typical spiking orbit from a reset point
(Vr, wn) immediately after the nth spike time tn,
to the (n + 1)th spike time (Fig. 1). After mov-
ing through region I (Vr ≤ V ≤ VT ), the orbit
reaches the transition point at (V,w) = (VT , w(tn +
T ∗

1)) ≡ (VT , w(t̂n)) ≡ (VT , ŵn), with its flight time
being T ∗

1. The orbit then moves through region II
(VT < V ≤ Vth) and the neuron spikes when V
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Fig. 1. Schematic of the phase plane. Solid: the V -nullcline.
Circles: part of a typical orbit from reset (V = Vr) to thresh-
old (V = Vth) when I(t) = 0. Regions I (Vr ≤ V ≤ VT ) and
II (VT < V ≤ Vth) are shown.

reaches the threshold voltage at the point (V,w) =
(Vth, w(tn + T ∗

1 + T ∗
2)) = (Vth, w(t−n+1)), with its

flight time being T ∗
2, and we have wn+1 ≡ w(t+n+1) =

w(t−n+1) + b. Note that we assume that once the
orbit enters region II it does not then re-enter
region I, but instead leaves through the boundary
V = Vth. This is not necessarily the case, as we
will see later. A typical orbit from firing time tn to
tn+1 is formulated as follows,

X(tn + T ∗
1) =

[
VT

ŵn

]
≡ G1(T ∗

1)

[
Vr

wn

]

+
∫ T∗

1

0
G1(s)g1(tn + T ∗

1 − s)ds (11)

and

X(tn + T ∗
1 + T ∗

2)

=

[
Vth

wn+1 − b

]
≡ G2(T ∗

2)

[
VT

ŵn

]

+
∫ T ∗

2

0
G2(s)g2(tn + T ∗

1 + T ∗
2 − s)ds (12)

Rewriting Eqs. (11) and (12) in terms of their com-
ponents, we have

0 = −VT + G1
11(T

∗
1)Vr + G1

12(T
∗
1)wn

+
1
C

∫ T ∗
1

0
G1

11(s)[I(tn + T ∗
1 − s) + gLEL]ds,

(13)

0 = −ŵn + G1
22(T

∗
1)wn, (14)

0 = −Vth + G2
11(T

∗
2)VT + G2

12(T
∗
2)ŵn

+
1
C

∫ T ∗
2

0
G2

11(s)[I(tn + T ∗
1 + T ∗

2 − s)

− gL∆T E]ds, (15)

0 = −wn+1 + b + G2
22(T

∗
2)ŵn. (16)

Solving for w(t): From (14) and (16), the evolu-
tion of w(t) from tn to tn+1 and resetting after the
firing time tn+1 gives

wn+1 = e
−(tn+1−tn)

τw wn + b

≡ H(tn+1 − tn, wn). (17)

Solving for V (t): The solution of V (t) from tn to
tn+1 can be found by rewriting (13) and (15) as

f1(T ∗
1; tn, wn) = 0 = −VT + G1

11(T
∗
1)Vr + G1

12(T
∗
1)wn

+
1
C

∫ T ∗
1

0
G1

11(s)[I(tn + T ∗
1 − s) + gLEL]ds, (18)

f2(T ∗
2; tn, T ∗

1, wn) = 0 = −Vth + G2
11(T

∗
2)VT + G2

12(T
∗
2)G

1
22(T

∗
1)wn

+
1
C

∫ T ∗
2

0
G2

11(s)[I(tn + T ∗
1 + T ∗

2 − s) − gL∆T E]ds, (19)

respectively. From now on we will specify that the periodic input current is given by I(t) = I0 + ε sin(Ωt),
where I0 is a constant current that drives the neuron up to spike, and Ω = 2πω, with ω being the input
frequency. In this case f1 and f2 can be expressed explicitly as,
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f1(T ∗
1; tn, wn) = 0 = −VT + e

−gL
C

T ∗
1Vr + k1(e

−gL
C

T ∗
1 − e

−1
τw

T∗
1)wn − (e

−gL
C

T ∗
1 − 1)(I0 + gLEL)

gL

+

ε

C(gL

C

)2
+ Ω2

{
−Ω cos(Ω(tn + T ∗

1)) +
gL

C
sin(Ω(tn + T ∗

1))

+ e
−gL

C
T ∗

1

[
Ω cos(Ωtn) − gL

C
sin(Ωtn)

]}
(20)

and

f2(T ∗
2; tn, T ∗

1, wn) = 0 = −Vth + e
gL∆T

C
T∗

2VT + k2(e
gL∆T

C
T ∗

2 − e
−1
τw

T∗
2)e

−1
τw

T ∗
1wn

+
(e

gL∆T
C

T ∗
2 − 1)(I0 − gL∆T E)

gL∆T
+

ε

C(
gL∆T

C

)2

+ Ω2

×
{
−Ω cos(Ω(tn + T ∗

1 + T ∗
2)) −

gL∆T

C
sin(Ω(tn + T ∗

1 + T ∗
2))

+ e
gL∆T

C
T ∗

2

[
Ω cos(Ω(tn + T ∗

1)) +
gL∆T

C
sin(Ω(tn + T ∗

1))
]}

. (21)

We also have

tn+1 = tn + T ∗
1 + T ∗

2. (22)

We can compute T ∗
1 by solving f1(T ∗

1; tn, wn) =
0, where tn and wn are specified, then compute
T ∗

2 by solving f2(T ∗
2; tn, T ∗

1, wn) = 0. The next fir-
ing time is given by (22), and wn+1 is computed
via (17). We can thus calculate the sequence of fir-
ing times {tn} using (20)–(22) and (17), provided
that the initial conditions, (t0, w0), are specified.
Note that (20) and (21) may have more than one
solution, but we solve them using a root-finder with
an initial guess close to the relevant value, as found
from a full simulation of (1) and (2).

We note here that the general problem of
strongly-forced neurons is a difficult one to study,
whereas much progress has been made in the
weakly-forced (or coupled) case [Schultheiss et al.,
2011]. Because the model we study can be solved
explicitly for all strengths of forcing, i.e. all ε, the
issue as to whether forcing is weak or strong does
not arise. Next we discuss mode locked solutions
and their existence.

4. Mode Locked Solutions

Instead of computing a series of firing times {tn}
from (20)–(22) and (17), we describe mode locked

solutions by the phase(s) of the periodic forcing at
which the neuron fires [Laing & Coombes, 2005;
Coombes et al., 2001]. We describe solutions for
which the neuron fires p times in every q periods of
the forcing function as p : q mode locked solutions,
where p and q are positive integers. For such a mode
locked solution, the firing times can be expressed in
terms of the firing phases as

tn =
(⌊

n

p

⌋
+ φn(p)

)
qT, n = 0, 1, 2, . . .

where �n/p� is the integer part of n/p, n(p) = n
mod p, and T is the period of the forcing (2π/Ω).
Instead of computing the firing times {tn}, we com-
pute the p associated firing phases φ0, . . . , φp−1 ∈
[0, 1). These distinct firing phases can be computed
from (20)–(22) and (17), as follows.

Firstly, given q and T , we define T ∗
1(φn, wn) to

be the solution of

f1(T ∗
1(φn, wn);φnqT,wn) = 0, (23)

and T ∗
2(φn, wn) to be the solution of

f2(T ∗
2(φn, wn);φnqT, T ∗

1(φn, wn), wn) = 0. (24)

We then have, from (22) and (17),

φn+1 = φn +
T ∗

1(φn, wn) + T ∗
2(φn, wn)

qT
, (25)
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wn+1 = H((φn+1 − φn)qT,wn), (26)

for n = 0, 1, . . . , p − 1, where φp = 1 + φ0 and
wp = w0. Therefore, we can find p : q mode locked
solutions by simultaneously solving the 2p Eqs. (25)
and (26) for the 2p unknowns: {φn}, {wn}, n = 0,
1, . . . , p − 1.

5. Stability of Mode Locked Orbits

We first discuss the evolution of perturbations to a
solution using a well-established approach [Alijani,
2009; Coombes & Bressloff, 1999; Coombes, 1999;
Chacron et al., 2004]. For convenience, we further
express the model (1) and (2) as

dV

dt
= f(V,w, t), (27)

dw

dt
= g(w), (28)

where

f(V,w, t)

=




[−gL(V − EL) − w + I0 + ε sin(Ωt)]
C

,

V ≤ VT

[gL∆T (V − E) − w + I0 + ε sin(Ωt)]
C

,

V > VT

and E = VT + (VT − EL)/∆T and

g(w) = − w

τw
,

with the firing rule that if V (t−) = Vth then
V (t+) = Vr and w(t+) = w(t−) + b. Suppose we
have one trajectory (V (t), w(t)) and a slightly per-
turbed trajectory (Vp(t), wp(t)). We define the per-
turbations to be δV (t) = V (t) − Vp(t) and δw(t) =
w(t) − wp(t). Between firing times these perturba-
tions evolve via

d

dt

(
δV

δw

)
=




α
−1
C

0
−1
τw



(

δV

δw

)
(29)

where α = −gL/C, if V ≤ VT , and α = gL∆T /C, if
V > VT . Let

δX =
(

δV

δw

)
.

That is

d

dt
δX =

{
A1δX, V ≤ VT

A2δX, V > VT

(30)

where A1 and A2 are (4) and (5) respectively. Sup-
pose V reaches Vth at time t1 and Vp reaches Vth at
a later time t1 + δ1. Then we have

V (t−1 ) = Vth, (31)

V (t+1 ) = Vr, (32)

Vp([t1 + δ1]−) = Vth, (33)

Vp([t1 + δ1]+) = Vr, (34)

w(t+1 ) = w(t−1 ) + b, (35)

wp([t1 + δ1]+) = wp([t1 + δ1]−) + b. (36)

From these we have

Vth = Vp([t1 + δ1]−)

≈ Vp(t−1 ) + δ1V̇p(t−1 )

≈ Vth − δV (t−1 ) + δ1V̇ (t−1 ),

where an overdot indicates derivative, and thus

δ1 ≈ δV (t−1 )
V̇ (t−1 )

=
δV (t−1 )

f(Vth, w(t−1 ), t1)

Now

δV ([t1 + δ1]+) = V ([t1 + δ1]+) − Vp([t1 + δ1]+)

≈ δ1f(Vr, w(t−1 ) + b, t1),

and thus

δV ([t1 + δ1]+) ≈
[
f(Vr, w(t−1 ) + b, t1)
f(Vth, w(t−1 ), t1)

]
δV (t−1 ).

We also have

δw([t1 + δ1]+)

≈ δw(t−1 ) + δ1

[
g(w(t−1 ) + b) − g(w(t−1 ))

]
,

and thus

δw([t1 + δ1]+)

≈ δw(t−1 ) +
[
g(w(t−1 ) + b) − g(w(t−1 ))

f(Vth, w(t−1 ), t1)

]
δV (t−1 ).

Combining these into matrix form, we have(
δV ([t1 + δ1]+)

δw([t1 + δ1]+)

)
=
(A 0
B 1

)(
δV (t−1 )

δw(t−1 )

)
, (37)
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where

A ≡ f(Vr, w(t−1 ) + b, t1)
f(Vth, w(t−1 ), t1)

and

B ≡ g(w(t−1 ) + b) − g(w(t−1 ))
f(Vth, w(t−1 ), t1)

.

In the limit of δ1 → 0, system (37) contributes
the discontinuous dynamics to the evolution of the
vector δX = (δV, δw)T . Thus by integrating (30)
between firing times (either analytically or numeri-
cally), and updating using (37) at each firing time,
we can determine the evolution of δX and thus mea-
sure the stability of the underlying solution.

5.1. Orbits which cross V = VT

once between firing times

We first consider the 1:1 locked orbit which crosses
V = VT once per period. We know that w0 is the
solution of w0 = e−T/τww0 +b where T is the period
of forcing. The only unknown is φ0. It satisfies the
scalar equation

T ∗
1(φ0, w0) + T ∗

2(φ0, w0) = T. (38)

To find the orbit’s stability, based on (30), which
correspond to motion in regions I and II (see Fig. 1),
respectively, consider a perturbation to the solution

δX =
(

δV

δw

)

just after firing. At a time T ∗
1 after firing, this per-

turbation will have evolved to be eA1T ∗
1δX. After a

further time T ∗
2 (= T − T ∗

1), this perturbation will
be eA2T ∗

2eA1T ∗
1δX. After firing again it will be(A 0
B 1

)
eA2T ∗

2eA1T ∗
1δX,

where

A ≡ f(Vr, w0, φ0T )
f(Vth, w0 − b, φ0T )

and

B ≡ g(w0) − g(w0 − b)
f(Vth, w0 − b, φ0T )

.

Writing

Dφ0 ≡
(A 0
B 1

)
,

we see that the stability of this particular solution
is given by the eigenvalues of the 2 × 2 matrix

κ ≡ Dφ0e
A2T ∗

2eA1T ∗
1 . (39)

If both eigenvalues of κ are less than one in mag-
nitude, this 1:1 orbit is stable, and it will become
unstable as parameters are varied if one or more
of the eigenvalues leave the unit circle in the com-
plex plane. It is also noted that, within each tongue,
there are generally one stable and one unstable orbit
that may emerge into a saddle-node, as I0 is varied,
defining the edge of the tongue.

As an example, Fig. 2 shows the relevant eigen-
values for the pair of 1:1 locked orbits which cross
V = VT once per period, as a function of I0. More
specially, at I0 = 210, the stable orbit is associated
with eigenvalues of approximately 0.6 and −0.25

190 195 200 205 210
−10

0

10

20

30

40

50

60

I
0

190 195 200 205 210
−2

−1

0

1

2

I
0

Fig. 2. Eigenvalues of the two 1:1 locked orbits which cross
V = VT once per period. Blue dots are for one orbit and red
for the other. The lower panel is an enlargement of the upper.
Parameters: b = 50 pA, Vr = −60mV, Vth = −36 mV, τw =
25 ms, C = 100 pF, ∆T = 3 mV, gL = 10nS, VT = −50mV,
ω = 0.04, EL = −70mV, ε = 200.
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(blue dots). The other unstable orbit is associated
with eigenvalues of ∼ 0.3 and ∼ 55 (red dots). As
I0 is decreased, the stable orbit undergoes a period-
doubling bifurcation (eigenvalue of −1 at I0 ≈ 206).
As I0 is further decreased, the stable and unsta-
ble orbits collide and go through a saddle-node
bifurcation (eigenvalue of 1 at I0 ≈ 191). To find
the value of I0 at which the saddle-node bifurca-
tion occurs we simultaneously solve (38) together
with det(κ − I2×2) = 0, and to find where the
period-doubling bifurcation occurs we simultane-
ously solve (38) together with det(κ + I2×2) = 0,
where I2×2 is the 2 × 2 identity matrix.

Now consider the stability of a general p : q
locked orbit which only crosses V = VT once
every firing, with p > 1. The firing phases are
φ0, φ1, . . . , φp−1, and the values of w after each of
these firings are w0, w1, . . . , wp−1. Assume that we
have found such an orbit, i.e. we know the {φn}.
Then

wn+1 = H((φn+1 − φn)qT,wn),

n = 0, . . . , p − 2, (40)

and wp = w0, i.e. given the phases, the {wn} are
specified. For a given (φn, wn), 0 ≤ n ≤ p− 1, there
are two times, Tn

1 and Tn
2 , such that T n

2 + T n
1 =

(φn+1 − φn)qT . Tn
1 is the amount of time that the

solution spends in region I and Tn
2 is the amount of

time it spends in region II, between the nth firing
and the (n + 1)th. We find T n

1 by solving

f1(T n
1 , φnqT,wn) = 0,

and then we have T n
2 = (φn+1 − φn)qT − T n

1 .
As above, consider a perturbation to the

solution

δX =
(

δV

δw

)

just after firing at phase φ0. After times T 0
1 and T 0

2

the perturbation has evolved to eA2T 0
2eA1T 0

1δX, and
after firing at phase φ1 the perturbation is(

A1 0

B1 1

)
eA2T 0

2eA1T 0
1δX,

where

A1 ≡ f(Vr, w1, φ1T )
f(Vth, w1 − b, φ1T )

and

B1 ≡ g(w1) − g(w1 − b)
f(Vth, w1 − b, φ1T )

.

Writing

Dn ≡
(
An 0

Bn 1

)
, n = 1, . . . , p,

where

An ≡ f(Vr, wn, φnT )
f(Vth, wn − b, φnT )

and

Bn ≡ g(wn) − g(wn − b)
f(Vth, wn − b, φnT )

,

we see that the stability of this mode locked solution
is given by the eigenvalues of the matrix

κ ≡ (Dpe
A2T p−1

2 eA1T p−1
1
)× (Dp−1e

A2T p−2
2 eA1T p−2

1
)

× · · · × (D1e
A2T 0

2eA1T 0
1
)
.

Note that explicit expressions for the exponentials
of these matrices are given in (9) and (10).

5.2. Orbits which cross V = VT three
times between firing times

For ε (the magnitude of the periodic forcing) large
enough, V may not increase monotonically between
firing times, and may cross the line V = VT several
times between successive firings, as shown in Fig. 3.
To identify such orbits we need to derive a new set
of equations which are satisfied by these orbits. To
find their stability we will need to know the amounts
of time spent in the two regions, I and II.

Suppose we have a 1:1 orbit for which the neu-
ron fires at time tn, then spends T1 in region I, then

−60 −55 −50 −45 −40
20

30

40

50

60

70

80

V

w

Fig. 3. A 1:1 mode locked orbit, crossing V = VT = −50mV
three times per period. Parameters as in Fig. 2, with I0 =
291.6 pA.
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T2 in region II, then crosses V = VT from above,
spending T3 in region II before crossing again and
taking time T4 to reach Vth at time tn+1, as shown
in Fig. 3. The equations satisfied by T1, . . . , T4 are
given in the Appendix, and using arguments similar
to those above we see that the stability of such an
orbit is determined by the eigenvalues of the matrix

κ ≡ Dφ0e
A2T4eA1T3eA2T2eA1T1 . (41)

The parameter values at which the 1:1 orbit
transitions from crossing V = VT once per period
to crossing three times per period can be found as
follows. We note that immediately following firing
we have

V (t) = F (t)

≡ e−gLt/CVr + k1(e−gLt/C − e−t/τw )w0

+
(

1
C

)
P

(−gL

C
, tn, t, gLEL

)
, (42)

where P is given by

P (a, b, c, d) ≡
∫ c

0
eas[I(b + c − s) + d]ds

=
(eac − 1)(I0 + d)

a
+

ε

a2 + Ω2

×{−Ω cos[Ω(b + c)] − a sin[Ω(b + c)]

+ eac[Ω cos(Ωb) + a sin(Ωb)]}. (43)

We can find the first time T ∗ (measured from tn)
at which V ′(T ∗) = 0 by solving F ′(T ∗) = 0,
where

CF ′(t) = −gLe−gLt/CVr

+ k1

(
−gLe−gLt/C +

Ce−t/τw

τw

)
w0

+ P ′
(−gL

C
, tn, t, gLEL

)
, (44)

where P ′(a, b, c, d) = ∂P (a, b, c, d)/∂c. Having
found T ∗ the transition occurs when F (T ∗) = VT .
Note that

P ′(a, b, c, d)

= eac(I0 + d) +
ε

a2 + Ω2

×{Ω2 sin[Ω(b + c)] − aΩ cos[Ω(b + c)]

+ aeac[Ω cos(Ωb) + a sin(Ωb)]}. (45)

100 150 200 250 300 350 400
0

50

100

150

200

250

300

I
0

ε

PD
sn1
sn3
sn1
1→ 3

Fig. 4. Bifurcations of the 1:1 orbit. sn1: saddle-node bifur-
cations assuming V = VT once per period. PD: period-
doubling. sn3: saddle-node bifurcation assuming V = VT

three times per period. 1 → 3: orbit transitions from crossing
V = VT once per period to three times per period. Parame-
ters: b = 50pA, Vr = −60mV, Vth = −36mV, τw = 25ms,
C = 100 pF, ∆T = 3mV, gL = 10 nS, VT = −50mV,
ω = 0.04, EL = −70mV.

Simultaneously solving the equations in the
Appendix for φ0 and F (T ∗) = VT for T ∗ we obtain
the transition of orbits crossing V = VT once to
three times per period (purple in Fig. 4). While we
have only discussed this transition for the 1:1 mode
locked orbit, a similar analysis can be undertaken
for any p : q locked orbit.

6. Numerical Results

We now show some numerical results illustrating
our analysis. Figure 4 demonstrates the bifurca-
tions associated with the 1:1 orbit. Shown are
the saddle-node bifurcations of the 1:1 orbit under
the assumption that V = VT once per period, the
period-doubling bifurcation of this orbit, the curve
on which the orbit makes the transition from cross-
ing V = VT once per period to three times per
period, and the saddle-node bifurcation of the orbit
which crosses V = VT three times per period. The
1:1 mode locked orbits are stable in the region
bounded by the period-doubling curve, sn3, and the
lower parts of both branches of sn1.

Numerical results for other low-order tongues
are shown in Fig. 5, where only the bifurcations at
which solutions lose stability are shown. We find
certain features that have not been observed in
some periodically forced systems studied previously.
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100

150

200

250

300

I0

ε

1:2 3:12:13:21:1

Fig. 5. Tongue structure of phase locking solutions is shown
in ε versus I0 parameter space. Each boundary shows where
a phase-locked solution goes through a specific bifurcation.
Blue indicates a period-doubling bifurcation, green and cyan
indicate saddle-node bifurcations, and red indicates a saddle-
node bifurcation for solutions which cross V = VT three times
between firings. Parameters as in Fig. 4.

For example, in [Coombes et al., 2012; Laing &
Coombes, 2005; Svensson & Coombes, 2009] and
[Alijani, 2009], many tongue boundaries (away from
the limit of small forcing amplitude) involved non-
smooth “grazing” bifurcations of the underlying
flow, where a solution reaches a firing threshold tan-
gentially. Due to the fast increase of V in region II,
particularly near Vth, the voltage of this model neu-
ron rises to a spike nearly instantaneously, in order
to mimic more realistic neuronal spiking. There-
fore, we do not observe this type of bifurcation
but instead consistently see period-doubling bifur-
cations which mark the low-I0 edge of tongues,
and saddle-node bifurcations (of orbits which cross
V = VT three times between firings) which mark
the high-I0 edge of tongues.

7. Computing the Maximal
Lyapunov Exponent

Given the general analysis of the stability of an
orbit in Sec. 5, we can easily find the maximal Lya-
punov exponent [Coombes, 1999] associated with
any orbit (not just a periodic one). In parallel with

Fig. 6. Maximal Lyapunov exponent. Parameters as in
Fig. 4.

(a)

(b)

Fig. 7. (a) Value of w after each firing and (b) maximal
Lyapunov exponent. Parameters: b = 310 pA, Vr = −40mV,
Vth = −36mV, τw = 5ms, C = 100 pF, ∆T = 3mV, gL =
10nS, VT = −50mV, ω = 0.04, ε = 60, EL = −70mV.
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integration of the original system (1) and (2), we
numerically integrate (30) between firing times, and
update at firing times using (37). The maximal
Lyapunov exponent, λ, is then defined in the usual
way as

λ = lim
t→∞

1
t

log |δX(t)|, (46)

where δX = (δV, δw)T . Figure 6 shows the maxi-
mal Lyapunov exponent associated with the tongue
structure shown in Fig. 5.

For the parameter values we have investigated,
chaotic behavior is rare. However, by increasing b
and Vr, and decreasing τw, we are able to obtain
chaotic behavior, as seen in Fig. 7. Note that for
these parameter values, the reset value Vr is greater
than VT (often resulting in bursting behavior), and
the system is qualitatively similar to that studied
by [Coombes et al., 2012].

8. Discussion

In this paper we studied the periodically-forced
piecewise-linear variant of the adaptive exponen-
tial integrate-and-fire neuron. The piecewise-linear
nature of the model allowed us to explicitly con-
struct arbitrary solutions, and in particular, p : q
mode locked ones, in which the neuron fires p times
for every q periods of the forcing. Such solutions
satisfy a number of simultaneous nonlinear alge-
braic equations, which can be solved using Newton’s
method; these solutions can be numerically contin-
ued as parameters are varied. We derived expres-
sions for the stability of an arbitrary orbit which
has two components: one from the smooth flow
between firings, and one from the discontinuity at
firing. This enabled us to detect period-doubling
and saddle-node bifurcations of mode locked orbits.
An interesting aspect of this model, that we are
not aware of occurring elsewhere, is that if the
amplitude of periodic forcing is sufficiently large,
solutions can enter different regions of phase space
multiple times between firing. Significant parts of
the boundaries of Arnol’d tongues are defined by
saddle-node bifurcations of such orbits.

We also observed similar tongue structures
when the spike triggered adaptation parameter, b,
was increased (not shown). More specifically, while
similar tongue structures are maintained, the asso-
ciated phase locked solutions are shifted to higher

values of I0 (in the ε versus I0 plane), as the param-
eter b is increased. This is consistent with the find-
ings shown in [Ladenbauer et al., 2012] that higher
values of input current I0 are required to maintain
the same spiking frequency, when higher values of b
are used.

For analytical tractability the subthreshold
adaptation parameter, a, is set at a = 0 in this
study. Numerical studies (not shown) also show that
tongue structures shift to the right (in the ε versus
I0 plane) as this parameter is increased. This again
agrees with findings shown in [Ladenbauer et al.,
2012] that higher values of input current I0 are nec-
essary to produce the same spiking frequency, when
higher values of a are used.
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Appendix

Derivation for Orbits Crossing
V = VT Three Times

Here we derive the equations governing the 1:1 solu-
tion which crosses V = VT three times per period.
Initially, at time tn, w = w0 and V = Vr. Then

X(tn + T1)

=

(
VT

w0e
−T1/τw

)
= G1(T1)

(
Vr

w0

)

+
∫ T1

0
G1(s)g1(tn + T1 − s)ds, (A.1)

X(tn + T1 + T2)

=

(
VT

w0e
−(T1+T2)/τw

)

= G2(T2)

(
VT

w0e
−T1/τw

)

+
∫ T2

0
G2(s)g2(tn + T1 + T2 − s)ds,(A.2)

X(tn + T1 + T2 + T3)

=

(
VT

w0e
−(T1+T2+T3)/τw

)
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October 24, 2013 12:48 WSPC/S0218-1274 1350171

Periodically Forced PWL-aEIF Neuron

= G1(T3)

(
VT

w0e
−(T1+T2)/τw

)

+
∫ T3

0
G1(s)g1(tn + T1 + T2 + T3 − s)ds,

(A.3)

and

X(tn + T1 + T2 + T3 + T4)

=

(
Vth

w0e
−(T1+T2+T3+T4)/τw

)

= G2(T4)

(
VT

w0e
−(T1+T2+T3)/τw

)

+
∫ T4

0
G2(s)g2(tn + T1 + T2 + T3 + T4 − s)ds.

(A.4)

As above, w0 = e−T/τww0 + b, and I(t) = I0 +
ε sin(Ωt). Given w0 and tn, the next firing time,
tn+1, is found as follows. Find T1 by solving
f1(T1; tn, wn) = 0, where

f1(T1; tn, w0)

= −VT + G1
11(T1)Vr + G1

12(T1)w0

+
1
C

∫ T1

0
G1

11(s)[I(tn + T1 − s) + gLEL]ds

= −VT + e−gLT1/CVr

+ k1(e−gLT1/C − e−T1/τw)w0

+
1
C

P

(−gL

C
, tn, T1, gLEL

)
, (A.5)

and P is given by (43). We then find T2 by solving
f2(T2;T1, tn, w0) = 0, where

f2(T2;T1, tn, w0)

= −VT + G2
11(T2)VT + G2

12(T2)w0e
−T1/τw

+
1
C

∫ T2

0
G2

11(s)[I(tn + T1 + T2 − s)

− gL∆T E]ds

= −VT + egL∆T T2/CVT

+ k2(egL∆T T2/C − e−T2/τw)w0e
−T1/τw

+
1
C

P

(
gL∆T

C
, tn + T1, T2,−gL∆T E

)
.

(A.6)

We find T3 by solving f3(T3;T2, T1, tn, w0) = 0,
where

f3(T3;T2, T1, tn, w0)

= −VT + G1
11(T3)VT + G1

12(T3)w0e
−(T1+T2)/τw

+
1
C

∫ T3

0
G1

11(s)[I(tn + T1 + T2 + T3 − s)

+ gLEL]ds

= −VT + e−gLT3/CVT

+ k1(e−gLT3/C − e−T3/τw)w0e
−(T1+T2)/τw

+
1
C

P

(−gL

C
, tn + T1 + T2, T3, gLEL

)
.

(A.7)

We finally find T4 by solving f4(T4;T3, T2, T1,
tn, w0) = 0, where

f4(T4;T3, T2, T1, tn, w0)

= −Vth + G2
11(T4)VT

+ G2
12(T4)w0e

−(T1+T2+T3)/τw

+
1
C

∫ T4

0
G2

11(s)[I(tn + T1 + T2

+ T3 + T4 − s) − gL∆T E]ds

= −Vth + egL∆T T4/CVT

+ k2(egL∆T T4/C − e−T4/τw)w0e
−(T1+T2+T3)/τw

+
1
C

P

(
gL∆T

C
, tn + T1 + T2

+ T3, T4,−gL∆T E

)
. (A.8)

Then tn+1 = tn + T1 + T2 + T3 + T4. In terms
of phases, for the 1:1 locked orbit, we write
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tn = (n + φ0)T and successively solve

f1(T1;φ0T,w0) = 0, (A.9)

f2(T2;T1, φ0T,w0) = 0, (A.10)

f3(T3;T2, T1, φ0T,w0) = 0, (A.11)

f4(T4;T3, T2, T1, φ0T,w0) = 0, (A.12)

for T1, . . . , T4. The correct value of φ0 is the one for which T1 + T2 + T3 + T4 − T = 0.
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