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Abstract In a previous article (Glowinski, J. Math. Anal. Appl. 41, 67–96, 1973)
the first author discussed several methods for the numerical solution of nonlinear
equations of the integro-differential type with periodic boundary conditions. In this
article we discuss an alternative methodology largely based on the Strang’s sym-
metrized operator-splitting scheme. Several numerical experiments suggest that the
new method is robust and accurate. It is also easier to implement than the various
methods discussed by Glowinski in J. Math. Anal. Appl. 41, 67–96 (1973).
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1 Introduction

Motivated by the numerical solution of nonlinear integro-differential equations mod-
eling nonlinear distortion correctors in high-power color TV transmitters, the first
author discussed in [8] the finite difference approximation, and the iterative solution
of nonlinear integro-differential equations of the following type:

du

dx
+ φ(u) + Au = f in (0,1), u(0) = u(1), (1.1)

R. Glowinski
Department of Mathematics, University of Houston, Houston, TX 77204, USA
e-mail: roland@math.uh.edu

L. Shiau (�) · M. Sheppard
Department of Mathematics, University of Houston, Clear Lake, Houston, TX 77058, USA
e-mail: shiau@uhcl.edu

M. Sheppard
e-mail: mzsheppard@gmail.com

mailto:roland@math.uh.edu
mailto:shiau@uhcl.edu
mailto:mzsheppard@gmail.com


R. Glowinski et al.

where

(1) φ : (α,β) �→ R is continuous and non-decreasing (with−∞ ≤ α < β ≤ +∞ and
φ(α) = −∞, φ(β) = +∞).

(2) A is the integral operator defined by

(Av)(x) =
∫ 1

0
a(x, y)v(y)dy, x ∈ (0,1).

We assume that A is positive semi-definite, that is
∫ 1

0
v(x)dx

∫ 1

0
a(x, y)v(y)dy ≥ 0, ∀v.

When, several decades ago, the first author had to address the numerical solution
of problems such as (1.1), he considered applying the methods discussed in [1–3].
However, these methods had troubles handling those situations where (α,β) 	= R. It
is also worth noticing that in order to solve an operator equation such as A(u) = 0,
where A maps an Hilbert space H into itself, the author of [1] has been advocating
(as many have done before and after) the following (Picard) algorithm,

u0 given in H. (1.2)

For n ≥ 0, un being known, we compute un+1 via

un+1 = un − ρA
(
un

)
, (1.3)

with (typically) ρ > 0 and not too large. Actually, algorithm (1.2), (1.3) can be ob-
tained by applying the forward Euler scheme to the time discretization of the follow-
ing initial value problem in H ,

{
du
dt

+ A(u) = 0 in (0,+∞),

u(0) = u0.
(1.4)

The method discussed in this article is in the same spirit, but, due to the fact that
(α,β) 	= R, we have used a more implicit variant of (1.2) and (1.3), taking advantage,
via operator-splitting, of the decomposition properties of the operator on the left-hand
side of (1.1).

Indeed, in order to overcome the difficulties associated with φ when (α,β) 	= R,
we advocated in [8], for the numerical solution of problem (1.1), a methodology
combining a Galerkin approximation with finite difference methods, the resulting
nonlinear system being solved by an alternating direction algorithm of the Douglas-
Rachford type (see, e.g., [10], Chap. 2, for a discussion of Douglas-Rachford and
related alternating direction algorithms, and further references). Actually, the numer-
ical method discussed in [8] can be viewed as an approximate solution method for
the following initial value problem (of the hyperbolic type):

⎧⎪⎨
⎪⎩

∂u
∂t

+ ∂u
∂x

+ φ(u) + Au = f in (0,1) × (0,+∞),

u(0, t) = u(1, t), t ∈ (0,+∞),

u(x,0) = u0(x), x ∈ (0,1).

(1.5)
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The solution of problem (1.1) is a steady state solution of system (1.5) obtained via
time integration from t = 0 to t = +∞. Since the publication of [8], considerable
progresses have been achieved concerning the use of operator-splitting methods for
the solution of initial value problems involving several operators, such as in system
(1.5). (Related publications are [9–16], among many others; see also the references
therein.) The main goal of this article is to take advantage of these progresses to revisit
the numerical solution of problem (1.1), applying to system (1.5) an operator-splitting
scheme of the Strang’s symmetrized type, optimally suited to the decomposition prop-
erties of the operator in problem (1.1) and system (1.5) which is clearly the sum of
three operators.

In the following sections, we will discuss the application of the Strang’s sym-
metrized operator-splitting scheme to the solution of (1.1), via (1.5), and present the
numerical results obtained when applying the novel methodology to the test problems
considered in [8].

In [8], one proved the existence and uniqueness of a solution to problem (1.1),
assuming that:

(1) The kernel of the integral operator A, that is the function a(·, ·), belongs to
L∞((0,1)2);

(2) f ∈ L∞(0,1);
(3) Either the function φ is strictly increasing or the integral operator A is positive

definite (of course, both properties can be verified simultaneously).

In this article, we are going to assume stronger properties for A and f , namely

f ∈ C0[0,1], f (0) = f (1), (1.6)

and the kernel of the integral operator A is such that

Av ∈ C0[0,1], (Av)(0) = (Av)(1), ∀v ∈ L1(0,1). (1.7)

One of the simplest kernels leading to a positive definite integral operator A verifying
(1.7) is defined by {

a(x, y) = 1
e−1ey−x+1, if 0 ≤ y < x ≤ 1,

a(x, y) = 1
e−1ey−x, if 0 ≤ x < y ≤ 1.

(1.8)

If we consider the following two-point boundary value problem{
du
dx

+ u = f in (0,1),

u(0) = u(1),
(1.9)

with f ∈ L1(0,1), then the unique continuous solution of Eq. (1.9) is given by

u(x) =
∫ 1

0
a(x, y)f (y)dy, ∀x ∈ [0,1], (1.10)

with a(x, y) given by (1.8).

Remark 1.1 The test problems considered in Sect. 7 are essentially borrowed from
[8]; they all verify the assumption (1.7). Concerning f , the test problems 1, 2 and 3
verify (1.6); the discontinuous function f associated with the fourth test problem can
be easily approximated by continuous functions verifying (1.6).
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Remark 1.2 The numerical solution of linear and nonlinear integral and integro-
differential equations has motivated a large number of publications. In addition to
[2, 3] and [1], let us mention among many others [4, 6, 7, 18, 19], and [5] (see also
the references therein). However, to the best of our knowledge, the method discussed
in this article seems to be ideally suited to the problem under consideration. In partic-
ular, it can handle easily those situations where (α,β) 	= R and does not require the
solution of large systems of linear and nonlinear equations.

2 On the Strang’s symmetrized scheme

To the best of our knowledge, the Strang’s symmetrized scheme was introduced in
[17]. Applied to the solution of the initial value problem

{
dϕ
dt

+ B(ϕ, t) = 0 in (0, T ),

ϕ(0) = ϕ0,
(2.1)

with 0 < T ≤ +∞ and B = B1 + B2, the Strang’s symmetrized scheme takes the
following form (with Δt(> 0) a time discretization step, and tn+α = (n + α)Δt):

ϕ0 = ϕ0. (2.2)

For n ≥ 0, we obtain ϕn+1 from ϕn via
{

ϕn+1/2 = ϕ(tn+1/2), ϕ being the solution of
dϕ
dt

+ B1(ϕ, t) = 0 in (tn, tn+1/2), ϕ(tn) = ϕn,
(2.3)

{
ϕ̂n+1/2 = ϕ(Δt), ϕ being the solution of
dϕ
dt

+ B2(ϕ, tn+1/2) = 0 in (0,Δt), ϕ(0) = ϕn+1/2,
(2.4)

{
ϕn+1 = ϕ(tn+1), ϕ being the solution of
dϕ
dt

+ B1(ϕ, t) = 0 in (tn+1/2, tn+1), ϕ(tn+1/2) = ϕ̂n+1/2.
(2.5)

Remark 2.1 As written, scheme (2.2)–(2.5) is not fully constructive, since we still
have to solve the initial value problems in (2.3), (2.4) and (2.5). Several aspects of
this most important issue will appear more clearly when applying scheme (2.2)–(2.5)
to the solution of problem (1.1).

Remark 2.2 Assuming that more than two operators are involved, such as B =
B1 + B2 + B3, we return easily to the two-operator situation by observing that
B = (B1 + B2) + B3, or B = B1 + (B2 + B3). By application of the Strang’s sym-
metrized scheme, the first (respectively, the second) decomposition leads to 7 (re-
spectively 5) fractional steps. When applying scheme (2.2)–(2.5) to the solution of
problem (1.1), we will use the second decomposition in order to minimize the num-
ber of fractional steps.
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3 Application of scheme (2.2)–(2.5) to the solution of problems (1.1) and (1.5)

In order to apply the material of Sect. 2 to the solution of (1.1), we rewrite (1.5) in
the following more abstract form{

du
dt

+ B1u + B2(u) + B3u = 0 in (0,+∞),

u(0) = u0,
(3.1)

where in (3.1):

(1) The linear operator B1 is associated with ∂u
∂x

and the periodic boundary condi-
tions.

(2) The nonlinear operator B2 is defined by B2(v)(x) ≡ φ(v(x)) − f (x).
(3) The linear operator B3 is defined by (B3v)(x) ≡ ∫ 1

0 a(x, y)v(y)dy.

Applying the symmetrized scheme (2.2)–(2.5) to the time-discretization of problem
(1.5), using the decomposition B = B1 + (B2 + B3), we obtain (denoting by v(t) the
function x �→ v(x, t)):

u(0) = u0. (3.2)

For n ≥ 0, we obtain un+1 from un via the solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1/5 = u(tn+1/2), u being the solution of the initial value problem⎧⎪⎨
⎪⎩

∂u
∂t

+ ∂u
∂x

= 0 in (0,1) × (tn, tn+1/2),

u(0, t) = u(1, t) in (tn, tn+1/2),

u(tn) = un,

(3.3)

⎧⎪⎪⎨
⎪⎪⎩

un+2/5 = u(Δt
2 ), u being the solution of the initial value problem{

∂u
∂t

+ φ(u) = f in (0,1) × (0,Δt/2),

u(0) = un+1/5,

(3.4)

⎧⎪⎪⎨
⎪⎪⎩

un+3/5 = u(Δt), u being the solution of the initial value problem{
∂u
∂t

+ ∫ 1
0 a(x, y)u(y, t)dy = 0 in (0,1) × (0,Δt),

u(0) = un+2/5,

(3.5)

⎧⎪⎨
⎪⎩

un+4/5 = u(Δt), u being the solution of the initial value problem{
∂u
∂t

+ φ(u) = f in (0,1) × (Δt/2,Δt),

u(0) = un+3/5,

(3.6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1 = u(tn+1), u being the solution of the initial value problem⎧⎪⎨
⎪⎩

∂u
∂t

+ ∂u
∂x

= 0 in (0,1) × (tn+1/2, tn+1),

u(0, t) = u(1, t) in (tn+1/2, tn+1),

u(tn+1/2) = un+4/5.

(3.7)
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In Sects. 4, 5 and 6, we will discuss the solution of the three types of initial value
problems one encounters, when applying scheme (3.2)–(3.7) to the solution of prob-
lem (1.5).

Remark 3.1 The integral operator component of problem (1.1) is taken into account
via (3.5). The initial value problem (3.5) is nothing but an integro-differential equa-
tion associated with a bounded linear operator; making the solution of (3.5) quite
easy, as shown in Sect. 6.

Remark 3.2 Suppose that u0 in (1.5) and (3.2) is continuous over [0,1] and periodic.
If the properties (1.6) and (1.7) of f and A are verified, we can easily show that,
∀n ≥ 0, un+1/5, un+2/5, un+3/5, un+4/5, and un+1 share the properties of continuity
and periodicity of u0. From now on, we will assume the continuity and periodicity of
u0 on [0,1].

4 On the solution of the sub-problems in (3.3) and (3.7)

4.1 Generalities

The sub-problems in (3.3) and (3.7) are both of the following type
⎧⎪⎨
⎪⎩

∂u
∂t

+ ∂u
∂x

= 0 in (0,1) × (t0, t1),

u(0, t) = u(1, t) in (t0, t1),

u(t0) = w,

(4.1)

where, in (4.1), the function w ∈ C0
p[0,1] = {ϕ|ϕ ∈ C0[0,1], ϕ(0) = ϕ(1)} and 0 <

t1 − t0 < 1. Since the general solution of the equation ∂u
∂t

+ ∂u
∂x

= 0 is of the form
u(x, t) = g(x − t), we clearly have

u(x, t1) =
{

w(x − (t1 − t0)), if x − (t1 − t0) ∈ [0,1], x ∈ [0,1],
w(x − (t1 − t0) + 1), if x − (t1 − t0) < 0, x ∈ [0,1]. (4.2)

4.2 Application to the solution of the initial value problems in (3.3) and (3.7)

Applying the relations (4.2) to (3.3) and (3.7), we obtain

un+1/5(x) =
{

un(x − Δt
2 ), if x − Δt

2 ∈ [0,1], x ∈ [0,1],
un(x + 1 − Δt

2 ), if x − Δt
2 < 0, x ∈ [0,1], (4.3)

and similarly

un+1(x) =
{

un+4/5(x − Δt
2 ), if x − Δt

2 ∈ [0,1], x ∈ [0,1],
un+4/5(x + 1 − Δt

2 ), if x − Δt
2 < 0, x ∈ [0,1]. (4.4)
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4.3 On the full discretization of the initial value problems in (3.3) and (3.7)

Let I be a positive integer (� 1, in practice). We introduce Δx = 1
I
, xi = iΔx,∀i =

1, . . . , I , and take Δt = Δx. In the following, un
i will denote an approximation of

u(iΔx,nΔt), with un
0 = un

I to respect the x-periodicity.
Concerning the computation of un+1/5 and un+1, from (3.3) and (3.7), we take

advantage of (4.3) and (4.4) as follows:
Suppose that for n ≥ 0, un(respectively, un+4/5) is approximated by {un

i }Ii=0 (re-

spectively, {un+4/5
i }Ii=0) with un

0 = un
I (respectively, u

n+4/5
0 = u

n+4/5
I ). We then have

un+1/5 = un+4/5 approximated by {un+1/5
i }Ii=0 and {un+1

i }Ii=0) given by

u
n+1/5
0 = 1

2

(
un

I−1 + un
0

)
, u

n+1/5
i = 1

2

(
un

i−1 + un
i

)
, ∀i = 1, . . . , I (4.5)

and

un+1
0 = 1

2

(
u

n+4/5
I−1 + u

n+4/5
0

)
, un+1

i = 1

2

(
u

n+4/5
i−1 + u

n+4/5
i

)
, ∀i = 1, . . . , I

(4.6)

respectively.

Remark 4.1 We can divide (approximately) by 2 the computational time dedicated
to the solution of the hyperbolic problems in (3.3) and (3.7). Indeed, it suffices to
observe that (as an obvious consequence of (3.3)–(3.7) and (4.3), (4.4)), for n ≥ 1,
we can merge (4.6) (with n replaced by n − 1) and (4.5), and replace them by

u
n+1/5
0 = u

(n−1)+4/5
I−1 , u

n+1/5
i = u

(n−1)+4/5
i−1 , ∀i = 1, . . . , I. (4.7)

Numerical results obtained using (4.7), instead of (4.5) and (4.6), will be presented
in Sect. 7.6.

5 On the solution of the sub-problems in (3.4) and (3.6)

We keep the notation in Sect. 4.3. To compute the approximation {un+2/5
i }Ii=0 (re-

spectively, {un+4/5
i }Ii=0) of un+2/5 (respectively, un+4/5), we replace the differential

equation in (3.4) (respectively (3.6)) by

u
n+2/5
i − u

n+1/5
i

Δt/2
+ φ

(
u

n+2/5
i + u

n+1/5
i

2

)
= f (iΔx), ∀i = 0,1, . . . , I − 1,

with u
n+2/5
I = u

n+2/5
0 (5.1)

(respectively,

u
n+4/5
i − u

n+3/5
i

Δt/2
+ φ

(
u

n+4/5
i + u

n+3/5
i

2

)
= f (iΔx), ∀i = 0,1, . . . , I − 1,

with u
n+4/5
I = u

n+4/5
0 ). (5.2)
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The one variable equations in (5.1) and (5.2) are obtained by applying one step of an
implicit second order Runge-Kutta scheme to the equation ∂u

∂t
+ φ(u) = f . Now, in

order to solve these nonlinear equations, we observe that they are all of the following
type,

X − Y

Δt/2
+ φ

(
X + Y

2

)
= F, (5.3)

with Y and F given in R. It is then convenient to introduce the new unknown Z =
X+Y

2 , that is X = 2Z − Y . Equation (5.3) becomes

Z + Δt

4
φ(Z) = Y + Δt

4
F. (5.4)

From the properties of φ, the one variable equation (5.4) has a unique solution in
(α,β). The numerical solution of one variable equations such as (5.4) has motivated a
most abundant literature. Actually, the properties of φ strongly influence the method-
ology appropriate for the solution of (5.4), as we will see in Sect. 7 for the particular
case where φ(Z) = ln(1 + Z).

6 On the solution of the sub-problem in (3.5)

6.1 Generalities. Time-discretization

The initial value problems encountered in (3.5) are of the following type:{
∂u
∂t

+ ∫ 1
0 a(x, y)u(y, t)dy = 0 in (0,1) × (t0, t1),

u(t0) = w,
(6.1)

with w ∈ C0
p[0,1]. In order to time-discretize the initial value problem (6.1), we first

introduce a positive integer M(≥ 1) and τ = t1−t0
M

. Next, we denote t0 + mτ by tm

(that is, tM = t1) and time-discretize (6.1) using the following second order explicit
Runge-Kutta scheme:

u0 = w; (6.2)

then, for m = 1, . . . ,M , we compute um from um−1 via

um−1/2 = um−1 − τ

2

∫ 1

0
a(x, y)um−1(y)dy, (6.3)

um = um−1 − τ

∫ 1

0
a(x, y)um−1/2(y)dy. (6.4)

When applying the above Runge-Kutta scheme to the solution of the sub-problem in
(3.5), we took M = 1. Relations (6.2)–(6.4) thus lead to

ûn+3/5 = un+2/5 − Δt

2

∫ 1

0
a(x, y)un+2/5(y)dy, (6.5)

un+3/5 = un+2/5 − Δt

∫ 1

0
a(x, y)ûn+3/5(y)dy. (6.6)
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6.2 Full discretization

We assume that a(·, ·) is continuous over [0,1]2\{{x, y}|x = y,0 ≤ x ≤ 1}, and con-
sider v ∈ C0

p[0,1] and w defined by w(x) = ∫ 1
0 a(x, y)v(y)dy,∀x ∈ [0,1]. From the

property (1.7) of the kernel a(·, ·), we have w ∈ C0
p[0,1]. For i = 0,1, . . . , I , we

approximate w(xi) (with xi = iΔx) by wi defined (from the trapezoidal rule) by
⎧⎪⎨
⎪⎩

w0 = 1
2Δx

∑I
j=0 αj (a0j + aIj )v(xj ),

wj = Δx
∑I

j=0 αjaij v(xj ), if 1 ≤ i ≤ I − 1,

wI = w0

(6.7)

in order to force the (discrete) periodicity. In (6.7), we have

(1) α0 = αI = 1
2 , αi = 1,∀i = 1, . . . , I − 1.

(2) aij =
{

a(xi, xj ), if i 	= j,

1
2 [a+(xi, xi) + a−(xi, xi)], if i = j,

where
a+(xi, xi) = lim ξ �→xi

ξ>xi

a(ξ, ξ) and a−(xi, xi) = lim ξ �→xi
ξ<xi

a(ξ, ξ).

Applying relations (6.7) to the full approximation of (6.5) and (6.6), we obtain, with
obvious notation,⎧⎪⎪⎨

⎪⎪⎩

û
n+3/5
0 = 1

2 (u
n+2/5
0 + u

n+2/5
I ) − 1

4ΔtΔx
∑I

j=0 αj (a0j + aIj )u
n+2/5
j ,

û
n+3/5
i = u

n+2/5
i − 1

2ΔtΔx
∑I

j=0 αjaiju
n+2/5
j , if 1 ≤ i ≤ I − 1,

û
n+3/5
I = û

n+3/5
0 ,

(6.8)

and ⎧⎪⎪⎨
⎪⎪⎩

u
n+3/5
0 = 1

2 (u
n+2/5
0 + u

n+2/5
I ) − 1

2ΔtΔx
∑I

j=0 αj (a0j + aIj )û
n+3/5
j ,

u
n+3/5
i = u

n+2/5
i − ΔtΔx

∑I
j=0 αjaij û

n+3/5
j , if 1 ≤ i ≤ I − 1,

u
n+3/5
I = u

n+3/5
0 ,

(6.9)

respectively.
Relations (6.8) and (6.9) complete the description of the operator-splitting method,

of the Strang symmetrized type, we advocate for the solution of (1.1), via the solution
of the initial value problem (1.5). It will be validated in Sect. 7, by the solution of
various test problems borrowed from [8].

7 Numerical experiments

7.1 Generalities

Three of the four test problems considered in this section are borrowed from [8];
these four problems are related to the electrical circuit shown in Fig. 1. The above
circuit is excited by the periodic function of time f (a voltage here), its nonlinear



R. Glowinski et al.

Fig. 1 A periodically excited
nonlinear electrical circuit

behavior originating from insertion of the diode. In a well-chosen system of physical
units, the periodic regime of the circuit is described by the following mathematical
model verified by the electric current i:{

Ldi
dt

+ ln(1 + i) + Ki = f in (0,1),

i(0) = i(1),
(7.1)

where, in (7.1), the linear operator K is defined by

(Kv)(t) =
∫ 1

0
k(t, τ )v(τ )dτ, ∀t ∈ [0,1], ∀v. (7.2)

In (7.2), the kernel k(·, ·) is representative of the RC dipole and is given by

k(t, τ ) =
{

αe−(t−τ)/RC if t > τ,

αe−(1+t−τ)/RC if t < τ,
(7.3)

with α = 1
C(1−e−1/RC)

; the integral operator K is positive definite. In the following we
will replace t by x and τ by y, and use the notation of Sects. 1 to 6.

To visualize the convergence of the operator-splitting based time stepping method
that we use to solve problem (1.1), we have introduced the two following residuals:

Rn
1 = Δx

I−1∑
i=0

∣∣un+1
i − un

i

∣∣ (7.4)

and

Rn
2 =

√√√√Δx

I−1∑
i=0

∣∣un+1
i − un

i

∣∣2
. (7.5)

Remark 7.1 When applying the operator-splitting schemes (3.2)–(3.7) to the solution
of the test problems considered below, we will have to solve (from (5.4), and with b

given in R) nonlinear problems of the following type:

Z + Δt

4
ln(1 + Z) = b, (7.6)

or equivalently

(1 + Z)
Δt
4 eZ = eb. (7.7)

Equation (7.7) (and (7.6)) has a unique solution on the open half-line (−1,+∞); this
solution verifies
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⎧⎪⎨
⎪⎩

0 < Z < b, if b > 0,

Z = 0, if b = 0,

−1 < Z < 0, if b < 0.

(7.8)

From the relations (7.8), one can easily solve (7.7), using the secant method over
either [0, b] or [−1,0], depending of the sign of b. Actually, if b > 0, it may be more
advantageous to solve (7.6), using the Newton’s method initialized with b.

Remark 7.2 When solving (1.5) to capture asymptotically the solution of (1.1), we
always initialized with u0 = 0.

7.2 First test problem

The first test problem that we consider is defined by{
du
dx

+ ln(1 + u) + αAu = f (x) in (0,1),

u(0) = u(1),
(7.9)

where in (7.9):

(1) The linear operator A is defined by (Av)(x) = ∫ 1
0 a(x, y)v(y)dy,∀x ∈ [0,1],∀v,

with a(·, ·) given by

a(x, y) =
{

e−(x−y) if x > y,

e−(1+x−y) if x < y.
(7.10)

(2) The forcing term f is given by

f (x) = −1.96π sin 2πx + log(1 + 0.98 cos 2πx)

+ 0.98α

1 + 4π2

(
1 − 1

e

)
(cos 2πx + 2π sin 2πx). (7.11)

With the above data, the exact solution of problem (7.9) is given by

u(x) = 0.98 cos 2πx. (7.12)

When applying the computational methods discussed in Sects. 2 to 6 to the solution
of problem (7.9), we took α = 5 and Δt = Δx varying from 5 × 10−2 to 2 × 10−3.

On Fig. 2 we have visualized, on a log scale, the monotone decay of the residuals
Rn

1 and Rn
2 for Δt = Δx = 2.5 × 10−3; we observe that these two functions of n are

almost identical suggesting that the convergence is dominated by very few modes. For
all the values of Δt that have been considered, we stopped iterating when Rn

1 ≤ 10−8.
On Fig. 3 (left) we have compared the exact solution u(x) with the computed solution
un(x), taking Δt = Δx = 2.5 × 10−3: the matching looks quite good, however, to
make the comparison more quantitative, we have reported on the Fig. 3 (right), using
a log-log scale, the variation versus Δx of the following approximation of the L2-
approximation error

ER2 =
√√√√Δx

I−1∑
i=0

∣∣u(xi) − u
nc

i

∣∣2
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Fig. 2 First test problem:
Variations of the residuals Rn

1
and Rn

2 versus the number of
time steps
(Δt = Δx = 2.5 × 10−3)

Fig. 3 First test problem: (left) comparison between the exact (−) and computed (- -) solutions
(Δt = Δx = 2.5 × 10−3); (right) variation of the ER2 versus Δx (−) (log-log scale; we used
Δt = Δx = 2 × 10−3,2.5 × 10−3,5 × 10−3,10−2,2 × 10−2,2.5 × 10−2,5 × 10−2)

where nc is the number of iterations necessary to achieve convergence, according
to the above stopping criterion; the above results strongly suggest that this error is
O(Δx3/2) (an evidence being the quasi-perfect parallelism between the graph of
log10 ER2 and the (dashed) line of slope 3/2 going through the point at the inter-
section of the axes).

7.3 Second test problem

This test problem differs from the first one by the choice of f , everything else being
the same including the parameter α(= 5) and the stopping criterion. The function f

is defined by

f (x) = 0.98π(4 cos 8πx − sin 2πx) + ln
[
1 + 0.49(cos 2πx + sin 8πx)

]

+
(

1 − 1

e

)[
α + 0.49

1 + 4π2
(cos 2πx + 2π sin 2πx)

+ α + 0.49

1 + 64π2
(sin 8πx − 8π cos 8πx)

]
. (7.13)

The corresponding exact solution is given by

u(x) = 0.49(cos 2πx + sin 8πx). (7.14)
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Fig. 4 Second test problem:
Variations of the residuals Rn

1
and Rn

2 versus the number of
time steps
(Δt = Δx = 2.5 × 10−3)

Fig. 5 Second test problem: (left) comparison between the exact (−) and computed (- -) solutions
(Δt = Δx = 2.5 × 10−3); (right) the variation of ER2 versus Δx (−) (log-log scale; We used
Δt = Δx = 2 × 10−3,2.5 × 10−3,5 × 10−3,10−2,2 × 10−2,2.5 × 10−2,5 × 10−2)

On Fig. 4 we have visualized the decay of the residuals Rn
1 and Rn

2 for Δt = Δx =
2.5 × 10−3. On Fig. 5 (left) we have compared the exact solution with the one com-
puted with Δt = Δx = 2.5 × 10−3: again, the matching looks quite good. We have
reported on the Fig. 5 (right) the variation of the L2-approximation error versus Δx.
The above results strongly suggest that, one more time, this error is O(Δx3/2).

7.4 Third test problem

The third test problem is still described by (7.9), (7.10), with α = 1 and 125, and f

defined by

f (x) = 10 cos 2πx. (7.15)

For α = 1 (resp., α = 125), we have used Δt = Δx = 10−2 (resp., 2.5 × 10−3) and
Rn

1 ≤ 10−8 (resp., 10−6), as stopping criterion. We have visualized on Fig. 6 the de-
cay of the residuals Rn

1 and Rn
2 for α = 1 (left) and α = 125 (right); the slower con-

vergence associated with α = 125 originates from stronger nonlinear effects which
reduce the smoothness of the solution and make less accurate the solution of the
nonlinear problems (7.7) when u is close to −1. The loss of smoothness and the
increased strength of the nonlinear effects, when one goes from α = 1 to α = 125,
appear clearly on Fig. 7, where we have visualized the computed solutions.



R. Glowinski et al.

Fig. 6 Third test problem: Variations of the residuals Rn
1 and Rn

2 versus the number of time steps;

(left) α = 1,Δt = Δx = 10−2, and (right) α = 125,Δt = Δx = 2.5 × 10−3

Fig. 7 Third test problem: Graphs of the computed solutions; (left) α = 1,Δt = Δx = 10−2, and
(right) α = 125,Δt = Δx = 2.5 × 10−3

7.5 The fourth test problem

The fourth test problem is still described by (7.9), (7.10) with α = 5 and f is given
by

f (x) =
{

β, if 0 ≤ x < 1
2 ,

−β, if 1
2 < x ≤ 1.

(7.16)

The function f defined by (7.16) is neither continuous nor periodic. In order to apply
to the numerical solution of this 4th test problem, the methods discussed in Sects. 2
to 6, for each value of Δx (� 1, in practice) we are going to approximate f by the
continuous and periodic function fΔx defined by
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Fig. 8 Fourth test problem: Variations of the residuals Rn
1 and Rn

2 versus the number of time steps.

(left) β = 5,Δt = Δx = 2.5 × 10−3; (right) β = 10,Δt = Δx = 2.5 × 10−3

Fig. 9 Four test problem: Graphs of the computed solutions; (left) β = 5,Δt = Δx = 2.5 × 10−3;
(right) β = 10,Δt = Δx = 2.5 × 10−3

fΔx(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β
Δx

x, if 0 ≤ x ≤ Δx,

β, if Δx ≤ x ≤ 1
2 − Δx,

β
Δx

( 1
2 − x), if 1

2 − Δx ≤ x ≤ 1
2 + Δx,

−β, if 1
2 + Δx ≤ x ≤ 1 − Δx,

β
Δx

(x − 1), if 1 − Δx ≤ x ≤ 1.

(7.17)

The numerical experiments associated with the 4th test problem have been carried
out with β = 5 and 10. For Δt = Δx = 2.5 × 10−3, we have reported on Fig. 8, the
variation versus n of the residuals Rn

1 and Rn
2 , taking as stopping criterion Rn

1 ≤ 10−8

(resp., 10−6) if β = 5 (resp., 10). As for the 3rd test problem, the stronger nonlinear
effects associated with large values of β slow down the convergence. Another evi-
dence of the stronger nonlinear effects associated with β = 10 appears clearly, when
comparing the computed solutions reported in Fig. 9.



R. Glowinski et al.

Fig. 10 Second test problem.
Comparison of the discrete
L2-errors ER2 between the
methods with (−) and without
(- -) averaging

7.6 Following on Remark 4.1

When inspecting the results obtained for the first and second test problems (see
Sects. 7.2 and 7.3), which have known closed form solutions, we observe that the
discrete analogue ER2 of the L2(0,1)-approximation error was behaving like Δx3/2,
modulo multiplication by a positive constant (see Figs. 3 and 5). The Strang’s scheme
being in principle second order accurate, we were wondering if this accuracy loss was
coming of the averaging procedure taking place in (4.5) and (4.6). In order to check
this assumption, we followed the suggestion of Remark 4.1 and replaced (4.5), (4.6)
by (4.7) in the fully discrete Strang’s scheme. When applied to the first and sec-
ond test problems, the numerical results showed there was no improvement since the
discrete L2-approximation error was still no better than Δx3/2, with in fact larger
values. On Fig. 10, we have compared, for the second test problem, the variations
of ER2 versus Δx for the discrete solutions obtained with and without averaging.
A possible explanation of the better performances of the method with averaging, is
that the corresponding algorithm has stronger damping properties for the high modes
of u(nΔt) − un

Δx than the algorithm without averaging.

8 Further comments

The main goal of this article was to discuss an alternative to the methods discussed
in [8], for the numerical solution of problem (1.1). The method discussed in Sects. 2
to 6 is robust, accurate and relatively simple to implement; nowhere it requires the
solution of linear systems. We think that the centered scheme based method in [8]—
second order accurate in principle—would have been competitive in terms of accu-
racy and stability; however, it would have been more complicated to implement since,
at each (pseudo) time step, one has to solve a linear system associated with a full ma-
trix (see [8] for details); let us mention that in [8] we took advantage of constant Δx

and pseudo-time step to LU factorize once for all the above full matrix, this being
facilitated by the fact that the integers I (I = 1/Δx) that we used were much smaller
than the ones in the present article.
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