
b) . . .
c) . . .
d) . . .
2. Given the following sets:
W = {0, 1, 2, 3, 4, 5, 6 }
A = { 0, 2, 4, 6 }
B ={ 1, 2, 3 }
Compute each of the below. ( 2 points each)
a) . . .
b) . . .
c) . . .
d) . . .
e) . . .
3. List all of the subsets of { m, n, o, p }. (6 points)
4. Shade the Venn Diagram to represent . . .
(6 points)
5. Identify the shaded portion of this Venn Diagram using
set notation. (6 points) . . .

a)| 1 x 2 = 2 x 1 | 1) | Closure +
| b) | 5 + 0 = 5 | 2) | Closure x
| c) | 7 x (3+5) = (3+5 ) x 7 | 3) | Commutativity +
| d) | 5 + 3 = 3 + 5 | 4) | Commutativity x
| e) | 1 x 6 = 6 | 5) | Associativity +
| f) | 3 x ( 7 + 5 ) = ( 3 x 7) + ( 3 X 5 ) | 6) | Associativity x
| g) | 1 + ( 2 + 3 ) = ( 1 + 2 ) + 3 | 7) | Identity +
| | | 8) | Identity x
| | | 9) | Distributive Property
| |

b) Myan . . .
c) Myan . . .
4. Calculate the following by the algorithm of your choice in Base seven.
(Do not convert to base 10) (6 points)
5. Divide in base six. (6 points)
34 x 1 = 34
34 x 2 = 112
34 x 3 = 150
34 x 4 = 224
34 x 5 = 302
6. Find the missing values in the base ten lattice multiplication problem
shown below. Then find the product. (6 points)
